Quasi-one-dimensional non-equilibrium method for shock tube and stagnation line flows

被引:0
|
作者
Clarke, J. [1 ]
Brody, S. [1 ]
Steer, J. [1 ]
McGilvray, M. [1 ]
Di Mare, L. [1 ]
机构
[1] University of Oxford, Oxford,OX1 2JD, United Kingdom
关键词
Navier Stokes equations;
D O I
10.1063/5.0218676
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Non-equilibrium condensation of water vapour in supersonic flows with shock waves
    Wen, Chuang
    Karvounis, Nikolas
    Walther, Jens Honore
    Ding, Hongbing
    Yang, Yan
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 149
  • [32] CONDUCTIVITY INCREASE DUE TO NON-EQUILIBRIUM CONDITIONS IN AN ACTUAL QUASI-ONE-DIMENSIONAL CONDUCTOR WITH CHARGE-DENSITY OR SPIN-DENSITY-WAVE GAP
    CONWELL, EM
    BANIK, NC
    [J]. PHYSICAL REVIEW B, 1982, 26 (02): : 530 - 535
  • [33] Quasi-one-dimensional method for solving the inverse magnetotelluric problem
    N. I. Berezina
    V. I. Dmitriev
    N. A. Merschikova
    [J]. Izvestiya, Physics of the Solid Earth, 2013, 49 : 350 - 355
  • [34] NEW VARIATIONAL METHOD FOR QUASI-ONE-DIMENSIONAL SPIN PROBLEMS
    KRIVNOV, VY
    OVCHINNIKOV, AA
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (33) : 6651 - 6658
  • [35] Renormalization group method for quasi-one-dimensional quantum Hamiltonians
    Moukouri, S
    Caron, LG
    [J]. PHYSICAL REVIEW B, 2003, 67 (09):
  • [36] Quasi-One-Dimensional Method for Ejecting Process in RBCC Engine
    Chen J.
    Bai H.-C.
    Wan B.
    [J]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43 (08):
  • [37] Quasi-one-dimensional method for solving the inverse magnetotelluric problem
    Berezina, N. I.
    Dmitriev, V. I.
    Merschikova, N. A.
    [J]. IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2013, 49 (03) : 350 - 355
  • [38] Non-equilibrium extrapolation method in the lattice Boltzmann simulations of flows with curved boundaries (non-equilibrium extrapolation of LBM)
    Kang, Xiyang
    Liao, Qiang
    Zhu, Xun
    Yang, Yanxia
    [J]. APPLIED THERMAL ENGINEERING, 2010, 30 (13) : 1790 - 1796
  • [39] Global stability of supersonic Euler flows in quasi-one-dimensional convergent nozzles
    Liao, Jing
    Tan, Zhong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)
  • [40] TIME MARCHING, FINITE AREA CALCULATION OF GENERAL QUASI-ONE-DIMENSIONAL FLOWS
    TORRES, JAD
    BAKER, RC
    [J]. COMPUTERS & FLUIDS, 1979, 7 (03) : 177 - 190