Cascaded matching based on detection box area for multi-object tracking

被引:2
|
作者
Gu, Songbo [1 ]
Zhang, Miaohui [1 ]
Xiao, Qiyang [1 ]
Shi, Wentao [2 ]
机构
[1] Henan Univ, Sch Artificial Intelligence, Zhengzhou 450046, Peoples R China
[2] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
关键词
Deep learning; Multi-object tracking; Cascaded matching; Detection box;
D O I
10.1016/j.knosys.2024.112075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the existing tracking-by-detection paradigm, advanced approaches rely on appearance features to establish associations between current detections and trajectories. However, these methods are often plagued by issues such as sluggish tracking performance and suboptimal results, particularly when confronted with the unreliability of the appearance features. Considering these challenges, we propose a novel cascaded matching algorithm called the detection box area-based tracking algorithm (DBAT), which groups the detection boxes by area size and associates detections within each group in a cascaded manner. To enhance the accuracy of grouping, we introduce two crucial components to enhance the quality of detections: the compressed self-decoding module (CSDM) and the task collaboration module (TCM). To acquire more precise location information and augment feature richness, CSDM decomposes the input features into two one-dimensional feature encodings and one two-dimensional feature encoding. Subsequently, these feature encodings perform feature aggregation along both spatial directions to capture long-range dependencies and refine the accuracy of location information. Ultimately, these aggregated features engage with the original features, facilitating information fusion and elevating the overall feature representation. To alleviate potential conflicts between various tasks and bolster task-specific representations, TCM combines disparate receptive fields and decouples features through self-relationship and cross-relationship mappings, thereby concurrently enhancing learning across different tasks. Extensive experiments demonstrate that our proposed method achieves performance comparable to state-of-the-art methods on the MOT17, MOT20 and DanceTrack benchmark tests.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Online multi-object tracking by detection based on generative appearance models
    Riahi, Dorra
    Bilodeau, Guillaume-Alexandre
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 152 : 88 - 102
  • [32] An Efficient Method for Monitoring Birds Based on Object Detection and Multi-Object Tracking Networks
    Chen, Xian
    Pu, Hongli
    He, Yihui
    Lai, Mengzhen
    Zhang, Daike
    Chen, Junyang
    Pu, Haibo
    ANIMALS, 2023, 13 (10):
  • [33] Multi-Object Tracking Based on Formation Stability
    Xu, Liang
    Li, Weihai
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [34] Multi-object tracking based on region corresponding and improved color-histogram matching
    Fang, Ying
    Wang, Huiyuan
    Mao, Shuang
    Wu, Xiaojuan
    2007 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, VOLS 1-3, 2007, : 18 - 21
  • [35] Multi-Object Tracking in Video Sequences Based on Background Subtraction and SIFT Feature Matching
    Rahman, Md. Saidur
    Saha, Aparna
    Khanum, Snigdha
    ICCIT: 2009 FOURTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND CONVERGENCE INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2009, : 457 - 462
  • [36] Dots matching algorithm based on voting correction for multi-object tracking on assembly line
    School of Information Science and Engineering, Central South University, Changsha 410083, China
    Zhongnan Daxue Xuebao (Ziran Kexue Ban), 2007, 3 (528-532):
  • [37] Coupled detection and trajectory estimation for multi-object tracking
    Leibe, Bastian
    Schindler, Konrad
    Van Gool, Luc
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 849 - 856
  • [38] Multi-object Tracking by Joint Detection and Identification Learning
    Bo Ke
    Huicheng Zheng
    Lvran Chen
    Zhiwei Yan
    Ye Li
    Neural Processing Letters, 2019, 50 : 283 - 296
  • [39] MULTI-OBJECT TRACKING BASED ON MATHEMATICAL MORPHOLOGY
    Hao, Huijuan
    Xu, Jiyong
    INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2009, : 238 - 240
  • [40] Hierarchical Matching Multi-Object Tracking Algorithm Based on Pseudo-Depth Information
    Hu Peng
    Pan Shuguo
    Gao Wang
    Wang Ping
    Guo Peng
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (18)