Evaluation of SEMG Amplitude Estimation Parameters by Amount of Probabilistic Information

被引:0
|
作者
Lee, Jin [1 ]
机构
[1] Dept. of Control & Instrumentation Engineering, Kangwon National Univ., Samcheok, Korea, Republic of
来源
Transactions of the Korean Institute of Electrical Engineers | 2022年 / 71卷 / 01期
关键词
Signal processing;
D O I
暂无
中图分类号
TN911 [通信理论];
学科分类号
081002 ;
摘要
Optimal Amplitude estimation from the SEMG(surface electromyogram) signal is important because it can be used potential sources to control prosthetics and robotics. In this paper, four representative SEMG amplitude estimation parameters(ARV:average rectified value, RMS:root mean square, MTA:mean turn amplitude, MSA:mean spike amplitude) were evaluated based on probabilistic information theory, which determine the amount of information that each parameter is able to extract from SEMG signal. Surface EMG signals from eleven subjects were recorded in biceps brachii muscle with constant isometric 20, 50, and 80%MVC contractions. The parameters were investigated by the amount of mutual information between stimulus(contraction level) and response(amplitude estimation parameter) variables. Results of this study show there are no statistical significant differences(p © 2022 Korean Institute of Electrical Engineers. All rights reserved.
引用
收藏
页码:261 / 266
相关论文
共 50 条
  • [41] Analysis of Probabilistic Fuzzy Systems' Parameters in Conditional Density Estimation
    Almeida, Rui Jorge
    Basturk, Nalan
    Kaymak, Uzay
    Sousa, Joao M. C.
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 2136 - 2143
  • [42] Optimal amount of information determination for power system steady state estimation
    Asanov, Murad
    Semenenko, Sergey
    Matrenin, Pavel
    Asanova, Salima
    Safaraliev, Murodbek
    Rusina, Anastasia
    Energy Reports, 2022, 8 : 1085 - 1092
  • [43] Validation and estimation of parameters for a general probabilistic model of the PCR process
    Saha, Nilanjan
    Watson, Layne T.
    Kafadar, Karen
    Ramakrishnan, Naren
    Onufriev, Alexey
    Mane, Shrinivasrao
    Vasquez-Robinet, Cecilia
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (01) : 97 - 112
  • [44] Probabilistic estimation of voltage sags using erroneous measurement information
    Woolley, N. C.
    Avendano-Mora, M.
    Woolley, A. P.
    Preece, R.
    Milanovic, J. V.
    ELECTRIC POWER SYSTEMS RESEARCH, 2014, 106 : 142 - 150
  • [45] A probabilistic approach for dynamic state estimation using visual information
    Soto, A
    Khosla, P
    KI 2003: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2003, 2821 : 421 - 435
  • [46] Sensitivity Evaluation of HOS Parameters by Data Fusion from HD-sEMG Grid
    Al Harrach, Mariam
    Ayachi, F. S.
    Boudaoud, Sofiane
    Laforet, Jeremy
    Marin, Frederic
    2013 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ABME 2013), 2013, : 97 - 100
  • [47] Probabilistic Evaluation of the Parameters Governing the Stability of the Tailing Dams
    Villavicencio, Gabriel
    Bacconnet, Claude
    Breul, Pierre
    Boissier, Daniel
    Espinasse, Raoul
    INFORMATION TECHNOLOGY IN GEO-ENGINEERING, 2010, : 108 - 116
  • [49] Probabilistic Evaluation of the Effects of Uncertainty in Transient Seepage Parameters
    Calamak, Melih
    Yanmaz, A. Melih
    Kentel, Elcin
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2017, 143 (09)
  • [50] Numerical evaluation of probabilistic fracture parameters using WSTRESS
    Ruggieri, C
    Dodds, RH
    ENGINEERING COMPUTATIONS, 1998, 15 (01) : 49 - +