Advanced metal-organic frameworks for superior carbon capture, high-performance energy storage and environmental photocatalysis - a critical review

被引:4
|
作者
Sher, Farooq [1 ]
Hayward, Anna [2 ]
El Guerraf, Abdelqader [3 ,4 ]
Wang, Bohong [5 ]
Ziani, Imane [4 ,6 ]
Hrnjic, Harun [4 ,7 ]
Boskailo, Emina [4 ,7 ]
Chupin, Alexander [8 ]
Nemtanu, Monica R. [9 ]
机构
[1] Nottingham Trent Univ, Sch Sci & Technol, Dept Engn, Nottingham NG11 8NS, England
[2] Coventry Univ, Sch Mech Aerosp & Automot Engn, Coventry CV1 5FB, England
[3] Hassan First Univ, Fac Sci & Technol, Lab Appl Chem & Environm, Settat 26002, Morocco
[4] Int Soc Engn Sci & Technol, Nottingham, England
[5] Zhejiang Ocean Univ, Natl & Local Joint Engn Res Ctr Harbor Oil & Gas S, Zhejiang Key Lab Petrochem Environm Pollut Control, 1 Haida South Rd, Zhoushan 316022, Peoples R China
[6] Mohammed First Univ, Fac Sci, Dept Chem, Lab Appl & Environm Chem LCAE, Oujda 60000, Morocco
[7] Univ Sarajevo, Dept Chem, Fac Sci, Sarajevo 71000, Bosnia & Herceg
[8] Peoples Friendship Univ Russia, RUDN Univ, Moscow 117198, Russia
[9] Natl Inst Laser Plasma & Radiat Phys, Electron Accelerators Lab, 409 Atomistilor St, Bucharest 077125, Romania
关键词
POSTCOMBUSTION CO2 CAPTURE; FACILE SYNTHESIS; MECHANICAL-PROPERTIES; EFFICIENT ELECTRODES; FLUE-GAS; SUPERCAPACITOR; MOF; ADSORPTION; DESIGN; WATER;
D O I
10.1039/d4ta03877k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) have emerged as a transformative class of materials, offering unprecedented versatility in applications ranging from energy storage to environmental remediation and photocatalysis. This groundbreaking review navigates the recent advancements in MOFs, positioning them against traditional materials to underscore their unique strength and potential drawbacks. In the context of energy storage, particularly within the realm of supercapacitors (SCs), MOF-based electrodes are evaluated for their superior specific capacitance (exceeding 1000 F/g), although these benefits are tempered by higher production cost. A comparative analysis with conventional activated carbon (AC) electrodes reveals MOFs' enhanced performance but also highlights cost as a significant barrier to widespread adoption. In carbon capture and storage (CCS), MOFs are contrasted with established liquid-amine technologies, with MOFs demonstrating environmental benefits, including the ability to achieve high-purity CO2 collection (>99%), despite higher expenses. Similarly, in photocatalysis, while titanium dioxide remains dominant, MOFs are shown to offer competitive performance with a reduced environmental footprint, though cost considerations again play a decisive role. This review not only consolidates the current state of MOF research but also identifies critical gaps, particularly in cost-effectiveness, that must be addressed to enable broader application. The findings advocate for continued innovation in MOF synthesis and production, with an emphasis on achieving a balance between performance and affordability. In summary, this review highlights the pivotal role of MOFs in advancing materials science and underscores the need for holistic approaches in material selection, with a forward-looking perspective on sustainable and economical production methods.
引用
收藏
页码:27932 / 27973
页数:42
相关论文
共 50 条
  • [31] Modulating photoelectronic performance of metal-organic frameworks for premium photocatalysis
    Zhang, Tiexin
    Jin, Yunhe
    Shi, Yusheng
    Li, Mochen
    Li, Jianing
    Duan, Chunying
    COORDINATION CHEMISTRY REVIEWS, 2019, 380 : 201 - 229
  • [32] Bismuth-Based Metal-Organic Frameworks for Water Vapor Capture and Energy Storage
    Ma, Jianxin
    Wang, Chen
    Liu, Qianqian
    Chen, Xinyu
    Li, Bo
    Su, Zhong-Min
    Lan, Ya-Qian
    Zang, Hong-Ying
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [33] Computational discovery of metal-organic frameworks gas capture and storage
    Siegel, Donald
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [34] Capture, Storage, and Release of Oxygen by Metal-Organic Frameworks (MOFs)
    Sutton, Ashley L.
    Melag, Leena
    Sadiq, M. Munir
    Hill, Matthew R.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (37)
  • [35] Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal-organic frameworks: a review
    Sheta, Sheta M.
    Hamouda, Mohamed A.
    Ali, Omnia I.
    Kandil, A. T.
    Sheha, Reda R.
    El-Sheikh, Said M.
    RSC ADVANCES, 2023, 13 (36) : 25182 - 25208
  • [36] Porous hybrid carbon nanofibers derived from metal-organic frameworks for high-performance supercapacitors
    Li, Yaqiong
    Wei, Zihao
    Chen, Xianqi
    Li, Shenghua
    Pang, Siping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 925
  • [37] Metal-organic frameworks (COFs) and covalent organic frameworks (COFs) for energy storage
    Feng, Dawei
    Bao, Zhenan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [38] Forum on Metal-Organic Frameworks for Energy Storage Applications
    Bloch, Eric D.
    Hosono, Nobuhiko
    Rossin, Andrea
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) : 9026 - 9026
  • [39] Metal-organic frameworks for energy storage: Batteries and supercapacitors
    Wang, Lu
    Han, Yuzhen
    Feng, Xiao
    Zhou, Junwen
    Qi, Pengfei
    Wang, Bo
    COORDINATION CHEMISTRY REVIEWS, 2016, 307 : 361 - 381
  • [40] Facile Synthesis of Vanadium Metal-Organic Frameworks for High-Performance Supercapacitors
    Yan, Yan
    Luo, Yuqing
    Ma, Jingyi
    Li, Bing
    Xue, Huaiguo
    Pang, Huan
    SMALL, 2018, 14 (33)