Direct probe of topology and geometry of quantum states on the IBM Q quantum processor

被引:0
|
作者
Chen, Tianqi [1 ]
Ding, Hai-Tao [1 ,2 ,3 ,4 ]
Shen, Ruizhe [1 ]
Zhu, Shi-Liang [5 ,6 ]
Gong, Jiangbin [1 ,7 ,8 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China
[4] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[5] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Minist Educ, Key Lab Atom & Subatom Struct & Quantum Control, Guangzhou 510006, Peoples R China
[6] South China Normal Univ, Sch Phys, Guangzhou 510006, Peoples R China
[7] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[8] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
DYNAMICS; TENSOR; MATTER;
D O I
10.1103/PhysRevB.110.205402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The concepts of topology and geometry are of critical importance in exploring exotic phases of quantum matter. Although they have been investigated on various experimental platforms, to date a direct probe of the topological and geometric properties on a universal quantum computer even for a minimum model is still in vain. In this work, we first show that a density matrix form of the quantum geometric tensor (QGT) can be explicitly reconstructed from Pauli operator measurements on a quantum circuit. We then propose two algorithms suitable for IBM quantum computers to directly probe QGT. The first algorithm is a variational quantum algorithm particularly suitable for noisy intermediate-scale quantum era devices, whereas the second one is a pure quantum algorithm based on quantum imaginary time evolution. Explicit results obtained from IBM Q simulating a Chern insulator model are presented and analyzed. Our results indicate that transmon qubit-based universal quantum computers have the potential to directly simulate and investigate topological and geometric properties of a quantum system.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Geometry of Gaussian quantum states
    Link, Valentin
    Strunz, Walter T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (27)
  • [22] Entropy and geometry of quantum states
    Shivam, Kumar
    Reddy, Anirudh
    Samuel, Joseph
    Sinha, Supurna
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (04)
  • [23] Direct tomography of quantum states and processes via weak measurements of Pauli spin operators on an NMR quantum processor
    Akshay Gaikwad
    Gayatri Singh
    Kavita Dorai
    The European Physical Journal D, 2023, 77
  • [24] Direct tomography of quantum states and processes via weak measurements of Pauli spin operators on an NMR quantum processor
    Gaikwad, Akshay
    Singh, Gayatri
    Dorai, Kavita
    Arvind
    EUROPEAN PHYSICAL JOURNAL D, 2023, 77 (12):
  • [25] Using linear and nonlinear entanglement witnesses to generate and detect bound entangled states on an IBM quantum processor
    Gulati, Vaishali
    Singh, Gayatri
    Dorai, Kavita
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [26] Geometry of mixed states for a q-bit and the quantum Fisher information tensor
    Ercolessi, E.
    Schiavina, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (36)
  • [27] Quantum Algorithms and Experiment Implementations Based on IBM Q
    Liu, Wenjie
    Chen, Junxiu
    Xu, Yinsong
    Tang, Jiahao
    Tong, Lian
    Song, Xiaoyu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 65 (02): : 1671 - 1689
  • [28] Implementing NChooseK on IBM Q Quantum Computer Systems
    Khetawat, Harsh
    Atrey, Ashlesha
    Li, George
    Mueller, Frank
    Pakin, Scott
    REVERSIBLE COMPUTATION (RC 2019), 2019, 11497 : 209 - 223
  • [29] Realizing topologically ordered states on a quantum processor
    Satzinger, K. J.
    Liu, Y-J
    Smith, A.
    Knapp, C.
    Newman, M.
    Jones, C.
    Chen, Z.
    Quintana, C.
    Mi, X.
    Dunsworth, A.
    Gidney, C.
    Aleiner, I
    Arute, F.
    Arya, K.
    Atalaya, J.
    Babbush, R.
    Bardin, J. C.
    Barends, R.
    Basso, J.
    Bengtsson, A.
    Bilmes, A.
    Broughton, M.
    Buckley, B. B.
    Buell, D. A.
    Burkett, B.
    Bushnell, N.
    Chiaro, B.
    Collins, R.
    Courtney, W.
    Demura, S.
    Derk, A. R.
    Eppens, D.
    Erickson, C.
    Faoro, L.
    Farhi, E.
    Fowler, A. G.
    Foxen, B.
    Giustina, M.
    Greene, A.
    Gross, J. A.
    Harrigan, M. P.
    Harrington, S. D.
    Hilton, J.
    Hong, S.
    Huang, T.
    Huggins, W. J.
    Ioffe, L. B.
    Isakov, S., V
    Jeffrey, E.
    Jiang, Z.
    SCIENCE, 2021, 374 (6572) : 1237 - +
  • [30] The Holometer: an instrument to probe Planckian quantum geometry
    Chou, Aaron
    Glass, Henry
    Gustafson, H. Richard
    Hogan, Craig
    Kamai, Brittany L.
    Kwon, Ohkyung
    Lanza, Robert
    McCuller, Lee
    Meyer, Stephan S.
    Richardson, Jonathan
    Stoughton, Chris
    Tomlin, Ray
    Weiss, Rainer
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (06)