A comprehensive review of deep learning in EEG-based emotion recognition: classifications, trends, and practical implications

被引:0
|
作者
Ma W. [1 ]
Zheng Y. [1 ]
Li T. [1 ]
Li Z. [1 ]
Li Y. [1 ]
Wang L. [1 ]
机构
[1] School of Information Science and Technology, North China University of Technology, Beijing
关键词
Deep learning; Electroencephalogram (EEG); Emotion recognition; Human computer interaction;
D O I
10.7717/PEERJ-CS.2065
中图分类号
学科分类号
摘要
Emotion recognition utilizing EEG signals has emerged as a pivotal component of human_computer interaction. In recent years, with the relentless advancement of deep learning techniques, using deep learning for analyzing EEG signals has assumed a prominent role in emotion recognition. Applying deep learning in the context of EEG- based emotion recognition carries profound practical implications. Although many model approaches and some review articles have scrutinized this domain, they have yet to undergo a comprehensive and precise classification and summarization process. The existing classifications are somewhat coarse, with insufficient attention given to the potential applications within this domain. Therefore, this article systematically classifies recent developments in EEG-based emotion recognition, providing researchers with a lucid understanding of this field’s various trajectories and methodologies. Additionally, it elucidates why distinct directions necessitate distinct modeling approaches. In conclusion, this article synthesizes and dissects the practical significance of EEG signals in emotion recognition, emphasizing its promising avenues for future application. © Copyright 2024 Ma et al.
引用
收藏
页码:1 / 39
页数:38
相关论文
共 50 条
  • [1] A comprehensive review of deep learning in EEG-based emotion recognition: classifications, trends, and practical implications
    Ma, Weizhi
    Zheng, Yujia
    Li, Tianhao
    Li, Zhengping
    Li, Ying
    Wang, Lijun
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [2] Deep Learning for EEG-based Emotion Recognition: A Survey
    Li J.-Y.
    Du X.-B.
    Zhu Z.-L.
    Deng X.-M.
    Ma C.-X.
    Wang H.-A.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (01): : 255 - 276
  • [3] A review on EEG-based multimodal learning for emotion recognition
    Rajasekhar Pillalamarri
    Udhayakumar Shanmugam
    Artificial Intelligence Review, 58 (5)
  • [4] Deep learning-based EEG emotion recognition: a comprehensive review
    Yuxiao Geng
    Shuo Shi
    Xiaoke Hao
    Neural Computing and Applications, 2025, 37 (4) : 1919 - 1950
  • [5] EEG-Based Human Emotion Recognition Using Deep Learning
    1600, Institute of Electrical and Electronics Engineers Inc.
  • [6] An Investigation of Deep Learning Models for EEG-Based Emotion Recognition
    Zhang, Yaqing
    Chen, Jinling
    Tan, Jen Hong
    Chen, Yuxuan
    Chen, Yunyi
    Li, Dihan
    Yang, Lei
    Su, Jian
    Huang, Xin
    Che, Wenliang
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [7] Singular Learning of Deep Multilayer Perceptrons for EEG-Based Emotion Recognition
    Guo, Weili
    Li, Guangyu
    Lu, Jianfeng
    Yang, Jian
    FRONTIERS IN COMPUTER SCIENCE, 2021, 3
  • [8] Can Emotion Be Transferred?-A Review on Transfer Learning for EEG-Based Emotion Recognition
    Li, Wei
    Huan, Wei
    Hou, Bowen
    Tian, Ye
    Zhang, Zhen
    Song, Aiguo
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (03) : 833 - 846
  • [9] TorchEEGEMO: A deep learning toolbox towards EEG-based emotion recognition
    Zhang, Zhi
    Zhong, Sheng-hua
    Liu, Yan
    Expert Systems with Applications, 2024, 249
  • [10] Role of machine learning and deep learning techniques in EEG-based BCI emotion recognition system: a review
    Samal, Priyadarsini
    Hashmi, Mohammad Farukh
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (03)