A Deep Retinex-Based Low-Light Enhancement Network Fusing Rich Intrinsic Prior Information

被引:0
|
作者
Li, Yujie [1 ]
Wei, Xuekai [1 ]
Liao, Xiaofeng [1 ]
Zhao, You [1 ]
Jia, Fan [2 ]
Zhuang, Xu [2 ]
Zhou, Mingliang [1 ]
机构
[1] School of Computer Science, Chongqing University, Chongqing, China
[2] Guangdong Opel Mobile Communications Co., Ltd., Chengdu, China
基金
中国国家自然科学基金;
关键词
Image enhancement - Image texture;
D O I
10.1145/3689642
中图分类号
学科分类号
摘要
Images captured under low-light conditions are characterized by lower visual quality and perception levels than images obtained in better lighting scenarios. Studies focused on low-light enhancement techniques seek to address this dilemma. However, simple image brightening results in significant noise, blurring, and color distortion. In this paper, we present a low-light enhancement (LLE) solution that effectively synergizes Retinex theory with deep learning. Specifically, we construct an efficient image gradient map estimation module based on convolutional networks that can efficiently generate noise-free image gradient maps to assist with denoising. Second, to improve upon the traditional optimization model, we design a matrix-preserving optimization method (MPOM) coupled with deep learning modules, and it exhibits high speed and low memory consumption. Third, we incorporate image structure, image texture, and implicit prior information to optimize the enhancement process for low-light conditions and overcome prevailing limitations, such as oversmoothing, significant noise, and so forth. Through extensive experiments, we show that our approach has notable advantages over the existing methods and demonstrate superiority and effectiveness, surpassing the state-of-the-art methods by an average of 1.23 dB in PSNR for the LOL and VE-LOL datasets. The code for the proposed method is available in a public repository for open-source use: https://github.com/luxunL/DRNet. © 2024 Copyright held by the owner/author(s) Publication rights licensed to ACM.
引用
下载
收藏
相关论文
共 50 条
  • [31] Image Enhancement of Low-Light Parking Space Based on Retinex
    Miao Z.
    Zhu L.
    Zhao C.
    Liu D.
    Li Y.
    Chen A.
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (06): : 989 - 996
  • [32] Multi-scale joint network based on Retinex theory for low-light enhancement
    Xijuan Song
    Jijiang Huang
    Jianzhong Cao
    Dawei Song
    Signal, Image and Video Processing, 2021, 15 : 1257 - 1264
  • [33] DA-DRN: A degradation-aware deep Retinex network for low-light image enhancement
    Wei, Xinxu
    Lin, Xi
    Li, Yongjie
    DIGITAL SIGNAL PROCESSING, 2024, 144
  • [34] Low-light image enhancement via deep Retinex decomposition and bilateral learning
    Lv, Xiaoqian
    Sun, Yujing
    Zhang, Jun
    Jiang, Feng
    Zhang, Shengping
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 99
  • [35] A depth iterative illumination estimation network for low-light image enhancement based on retinex theory
    Chen, Yongqiang
    Wen, Chenglin
    Liu, Weifeng
    He, Wei
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [36] A depth iterative illumination estimation network for low-light image enhancement based on retinex theory
    Yongqiang Chen
    Chenglin Wen
    Weifeng Liu
    Wei He
    Scientific Reports, 13
  • [37] Low-Light Enhancement Method Based on a Retinex Model for Structure Preservation
    Zhou, Mingliang
    Wu, Xingtai
    Wei, Xuekai
    Xiang, Tao
    Fang, Bin
    Kwong, Sam
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 (650-662) : 650 - 662
  • [38] Low-Light Mine Image Enhancement Algorithm Based on Improved Retinex
    Tian, Feng
    Wang, Mengjiao
    Liu, Xiaopei
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [39] Optimization algorithm for low-light image enhancement based on Retinex theory
    Yang, Jie
    Wang, Jun
    Dong, LinLu
    Chen, ShuYuan
    Wu, Hao
    Zhong, YaWen
    IET IMAGE PROCESSING, 2023, 17 (02) : 505 - 517
  • [40] Low-Light Image Enhancement Based on Deep Convolutional Neural Network
    Ma Hongqiang
    Ma Shiping
    Xu Yuelei
    Zhu Mingming
    ACTA OPTICA SINICA, 2019, 39 (02)