A Deep Retinex-Based Low-Light Enhancement Network Fusing Rich Intrinsic Prior Information

被引:0
|
作者
Li, Yujie [1 ]
Wei, Xuekai [1 ]
Liao, Xiaofeng [1 ]
Zhao, You [1 ]
Jia, Fan [2 ]
Zhuang, Xu [2 ]
Zhou, Mingliang [1 ]
机构
[1] School of Computer Science, Chongqing University, Chongqing, China
[2] Guangdong Opel Mobile Communications Co., Ltd., Chengdu, China
基金
中国国家自然科学基金;
关键词
Image enhancement - Image texture;
D O I
10.1145/3689642
中图分类号
学科分类号
摘要
Images captured under low-light conditions are characterized by lower visual quality and perception levels than images obtained in better lighting scenarios. Studies focused on low-light enhancement techniques seek to address this dilemma. However, simple image brightening results in significant noise, blurring, and color distortion. In this paper, we present a low-light enhancement (LLE) solution that effectively synergizes Retinex theory with deep learning. Specifically, we construct an efficient image gradient map estimation module based on convolutional networks that can efficiently generate noise-free image gradient maps to assist with denoising. Second, to improve upon the traditional optimization model, we design a matrix-preserving optimization method (MPOM) coupled with deep learning modules, and it exhibits high speed and low memory consumption. Third, we incorporate image structure, image texture, and implicit prior information to optimize the enhancement process for low-light conditions and overcome prevailing limitations, such as oversmoothing, significant noise, and so forth. Through extensive experiments, we show that our approach has notable advantages over the existing methods and demonstrate superiority and effectiveness, surpassing the state-of-the-art methods by an average of 1.23 dB in PSNR for the LOL and VE-LOL datasets. The code for the proposed method is available in a public repository for open-source use: https://github.com/luxunL/DRNet. © 2024 Copyright held by the owner/author(s) Publication rights licensed to ACM.
引用
下载
收藏
相关论文
共 50 条
  • [1] Retinex-based Low-Light Image Enhancement
    Luo, Rui
    Feng, Yan
    He, Mingxin
    Zhang, Yuliang
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1429 - 1434
  • [2] A Retinex-based network for image enhancement in low-light environments
    Wu, Ji
    Ding, Bing
    Zhang, Beining
    Ding, Jie
    PLOS ONE, 2024, 19 (05):
  • [3] Dual Autoencoder Network for Retinex-Based Low-Light Image Enhancement
    Park, Seonhee
    Yu, Soohwan
    Kim, Minseo
    Park, Kwanwoo
    Paik, Joonki
    IEEE ACCESS, 2018, 6 : 22084 - 22093
  • [4] Low-Light Image Enhancement using Retinex-based Network with Attention Mechanism
    Ma S.
    Pan W.
    Li N.
    Du S.
    Liu H.
    Xu B.
    Xu C.
    Li X.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (01) : 489 - 497
  • [5] URetinex-Net: Retinex-based Deep Unfolding Network for Low-light Image Enhancement
    Wu, Wenhui
    Weng, Jian
    Zhang, Pingping
    Wang, Xu
    Yang, Wenhan
    Jiang, Jianmin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5891 - 5900
  • [6] Retinex-Based Fast Algorithm for Low-Light Image Enhancement
    Liu, Shouxin
    Long, Wei
    He, Lei
    Li, Yanyan
    Ding, Wei
    ENTROPY, 2021, 23 (06)
  • [7] Retinex-Based Multiphase Algorithm for Low-Light Image Enhancement
    Al-Hashim, Mohammad Abid
    Al-Ameen, Zohair
    TRAITEMENT DU SIGNAL, 2020, 37 (05) : 733 - 743
  • [8] Retinex-Based Variational Framework for Low-Light Image Enhancement and Denoising
    Ma, Qianting
    Wang, Yang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5580 - 5588
  • [9] Low-Light Image Enhancement by Retinex-Based Algorithm Unrolling and Adjustment
    Liu, Xinyi
    Xie, Qi
    Zhao, Qian
    Wang, Hong
    Meng, Deyu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 14
  • [10] A deep Retinex network for underwater low-light image enhancement
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)