A many-objective evolutionary algorithm based on clustering and the sum of objectives

被引:0
|
作者
Wang, Xu-Jian [1 ]
Zhang, Feng-Gan [1 ]
Yao, Min-Li [1 ]
机构
[1] College of Combat Support, Rocket Force University of Engineering, Xi’an,710025, China
来源
Kongzhi yu Juece/Control and Decision | 2024年 / 39卷 / 10期
关键词
'current - Clusterings - Elitist archives - Many-objective optimizations - Multi-objectives optimization - Nondominated solutions - Pareto dominance - Pareto front - Reference vectors - Sum of objective;
D O I
10.13195/j.kzyjc.2023.0596
中图分类号
学科分类号
摘要
Decomposition-based many-objective evolutionary algorithms need to adjust reference vectors when solving problems with irregular Pareto fronts. To avoid this complicated operation, this paper proposes a many-objective evolutionary algorithm based on clustering and the sum of objectives (CSEA). This algorithm introduces a periodically updated elitist archive to store non-dominated solutions, which guides the evolving directions of the current population through clustering and maintains the diversity of the current population. When selecting solutions, CSEA evaluates convergence according to Pareto dominance and the sum of objectives, and then select well-converged solutions according to non-dominated sorting and fitness-based sorting. Compared with seven algorithms on two many-objective optimization test suites, CSEA is effective on many-objective optimization problems with various shapes of Pareto fronts. © 2024 Northeast University. All rights reserved.
引用
收藏
页码:3190 / 3198
相关论文
共 50 条
  • [21] Clustering-Based Selection for Evolutionary Many-Objective Optimization
    Denysiuk, Roman
    Costa, Lino
    Santo, Isabel Espirito
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 538 - 547
  • [22] Clustering-based selection for evolutionary many-objective optimization
    Denysiuk, Roman
    Costa, Lino
    Santo, Isabel Espírito
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8672 : 538 - 547
  • [23] A novel clustering-based evolutionary algorithm with objective space decomposition for multi/many-objective optimization
    Zheng, Wei
    Tan, Yanyan
    Yan, Zeyuan
    Yang, Mingming
    INFORMATION SCIENCES, 2024, 677
  • [24] Many-objective optimization based on sub-objective evolutionary algorithm
    Jiang, Wenzhi (ytjwz@sohu.com), 1910, Beijing University of Aeronautics and Astronautics (BUAA) (41):
  • [25] Hybrid selection based multi/many-objective evolutionary algorithm
    Dutta, Saykat
    Mallipeddi, Rammohan
    Das, Kedar Nath
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [26] A many-objective evolutionary algorithm based on fuzzy dominance: MFEA
    Bi, Xiao-Jun
    Zhang, Yong-Jian
    Chen, Chun-Yu
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1653 - 1659
  • [27] An online-learning-based evolutionary many-objective algorithm
    Zhao H.
    Zhang C.
    Information Sciences, 2020, 509 : 1 - 21
  • [28] A Grid-Based Evolutionary Algorithm for Many-Objective Optimization
    Yang, Shengxiang
    Li, Miqing
    Liu, Xiaohui
    Zheng, Jinhua
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (05) : 721 - 736
  • [29] A Research Mode Based Evolutionary Algorithm for Many-Objective Optimization
    Chen Guoyu
    Li Junhua
    CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (04) : 764 - 772
  • [30] A Many-objective Evolutionary Algorithm Based on Angle Penalized Distance
    Bi Xiaojun
    Wang Chao
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (02) : 314 - 322