Apple surface defect detection based on lightweight improved YOLOv5s

被引:0
|
作者
Lv L. [1 ]
Yilihamu Y. [1 ]
Ye Y. [1 ]
机构
[1] School of Electrical Engineering, Xinjiang University, Urumqi
基金
中国国家自然科学基金;
关键词
defect detection; EfficientNetv2; EMA; YOLOv5s;
D O I
10.1504/IJICT.2024.139106
中图分类号
学科分类号
摘要
Aiming at the current Apple surface defect detection algorithms with a large quantity of parameters, and poor real-time detection, a defect detection model to improve YOLOv5s is proposed. With the YOLOv5s model serving as a foundation, the EfficientNetv2 structure takes the role of the YOLOv5s model’s backbone network. Second, by including the EMA attention mechanism in the neck component, the model’s ability to extract important characteristics can be improved. Finally, using Alpha-IoU to optimise the IoU loss function can successfully raise the precision of the prediction box. The experimental findings demonstrate that the model size of the improved YOLOv5s model in this paper have been reduced by 20%, the recognition speed has been increased by 39.3%, and the mAP has been improved by 1.4%. In contrast to the initial model, the improved model has a smaller model size and a faster detection speed, while guaranteeing the detection accuracy. Copyright © The Author(s) 2024.
引用
收藏
页码:113 / 128
页数:15
相关论文
共 50 条
  • [21] Improved Method for Apple Fruit Target Detection Based on YOLOv5s
    Wang, Huaiwen
    Feng, Jianguo
    Yin, Honghuan
    AGRICULTURE-BASEL, 2023, 13 (11):
  • [22] Strip Pickling Defect Detection Based on Improved YOLOv5s Algorithm
    Zhu, Xiaoyan
    Zhang, Mingyu
    Liu, Yong
    Wan, Xin
    Wang, Xiwen
    Zhou, Peng
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2234 - 2238
  • [23] Research on paint defect detection algorithm based on improved YOLOv5s
    Lu, Shunpeng
    Xiao, Yongfei
    Wang, Gang
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1455 - 1459
  • [24] Track Fastener Defect Detection Model Based on Improved YOLOv5s
    Li, Xue
    Wang, Quan
    Yang, Xinwen
    Wang, Kaiyun
    Zhang, Hongbing
    SENSORS, 2023, 23 (14)
  • [25] Improved Defect Detection Algorithm in Power Inspection Based on YOLOv5s
    Wang, Lei
    Hao, Yongting
    Pan, Mingran
    Zhao, Mudong
    Zhang, Yongxin
    Zhang, Mingyu
    Computer Engineering and Applications, 2024, 60 (10) : 256 - 265
  • [26] Road surface crack detection based on improved YOLOv5s
    Ding, Jiaming
    Jiao, Peigang
    Li, Kangning
    Du, Weibo
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (03) : 4269 - 4285
  • [27] Lightweight Surface Defect Detection Algorithm Based on Improved YOLOv5
    Yang, Kaijun
    Chen, Tao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 798 - 802
  • [28] A lightweight ship target detection model based on improved YOLOv5s algorithm
    Zheng, Yuanzhou
    Zhang, Yuanfeng
    Qian, Long
    Zhang, Xinzhu
    Diao, Shitong
    Liu, Xinyu
    Cao, Jingxin
    Huang, Haichao
    PLOS ONE, 2023, 18 (04):
  • [29] A lightweight algorithm for small traffic sign detection based on improved YOLOv5s
    Cai, Kunhui
    Yang, Jingmin
    Ren, Jinghui
    Zhang, Wenjie
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 4821 - 4829
  • [30] Lightweight Traffic Sign Recognition and Detection Algorithm Based on Improved YOLOv5s
    Liu, Fei
    Zhong, Yanfen
    Qiu, Jiawei
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)