Quantum Machine Learning Playground

被引:0
|
作者
Debus, Pascal [1 ]
Issel, Sebastian [1 ]
Tscharke, Kilian [1 ]
机构
[1] Fraunhofer Inst Appl & Integrated Secur, D-85748 Garching, Germany
关键词
Quantum computing; Logic gates; Qubit; Machine learning; Data visualization; Quantum entanglement; Machine learning algorithms; VISUALIZATION;
D O I
10.1109/MCG.2024.3456288
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article introduces an innovative interactive visualization tool designed to demystify quantum machine learning (QML) algorithms. Our work is inspired by the success of classical machine learning visualization tools, such as TensorFlow Playground, and aims to bridge the gap in visualization resources specifically for the field of QML. The article includes a comprehensive overview of relevant visualization metaphors from both quantum computing and classical machine learning, the development of an algorithm visualization concept, and the design of a concrete implementation as an interactive web application. By combining common visualization metaphors for the so-called data reuploading universal quantum classifier as a representative QML model, this article aims to lower the entry barrier to quantum computing and encourage further innovation in the field. The accompanying interactive application is a proposal for the first version of a QML playground for learning and exploring QML models.
引用
收藏
页码:40 / 53
页数:14
相关论文
共 50 条
  • [31] Machine Learning in a quantum world
    Aimeur, Esma
    Brassard, Gilles
    Gambs, Sebastien
    ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4013 : 431 - 442
  • [32] Survey on Quantum Machine Learning
    Wang, Jian
    Zhang, Rui
    Jiang, Nan
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (08): : 3843 - 3877
  • [33] Quantum adiabatic machine learning
    Kristen L. Pudenz
    Daniel A. Lidar
    Quantum Information Processing, 2013, 12 : 2027 - 2070
  • [34] Machine learning for quantum physics
    Hush, Michael R.
    SCIENCE, 2017, 355 (6325) : 580 - 580
  • [35] Quantum Machine Learning: Survey
    Medisetty, Pramoda
    Evuru, Poorna Chand
    Vulavalapudi, Veda Manohara Sunanda
    Pallapothu, Leela Krishna Kumar
    Annapurna, Bala
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (06) : 971 - 981
  • [36] Quantum Machine Learning: A tutorial
    Martin-Guerrero, Jose D.
    Lamata, Lucas
    NEUROCOMPUTING, 2022, 470 : 457 - 461
  • [37] Distributed Quantum Machine Learning
    Neumann, Niels M. P.
    Wezeman, Robert S.
    INNOVATIONS FOR COMMUNITY SERVICES, I4CS 2022, 2022, 1585 : 281 - 293
  • [38] Quantum learning and universal quantum matching machine
    Sasaki, M
    Carlini, A
    PHYSICAL REVIEW A, 2002, 66 (02): : 1 - 10
  • [39] Quantum machine learning and quantum biomimetics: A perspective
    Lamata, Lucas
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (03):
  • [40] A parallel quantum eigensolver for quantum machine learning
    Yang, Fan
    Zhao, Dafa
    Wei, Chao
    Chen, Xinyu
    Wei, Shijie
    Wang, Hefeng
    Long, Guilu
    Xin, Tao
    NEW JOURNAL OF PHYSICS, 2024, 26 (04):