Assessing field scale spatiotemporal heterogeneity in salinity dynamics using aerial data assimilation

被引:0
|
作者
Ebrahimi, Saman [1 ]
Khorram, Mahdis [1 ]
Palmate, Santosh [2 ]
Chaganti, Vijaya [3 ]
Ganjegunte, Girisha [2 ]
Kumar, Saurav [1 ]
机构
[1] Arizona State Univ, Sch Sustainable Engn & Built Environm, 660 S Coll Ave, Tempe, AZ 85281 USA
[2] Texas A&M Agrilife Res, El Paso, TX 79927 USA
[3] Virginia Tech, Blacksburg, VA 24060 USA
基金
美国国家科学基金会;
关键词
Soil salinity; Data assimilation; Optically inactive properties; Remote sensing; KNN algorithm; Markov Chain-Monte Carlo; ET estimation; SOIL-SALINITY; PRECISION AGRICULTURE; RICHARDS EQUATION; EVAPOTRANSPIRATION; IRRIGATION; TRANSPORT; MODEL; FLOW; MSI;
D O I
10.1016/j.agwat.2024.109114
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soil moisture and salinity shifts within the root zone can significantly alter crop yields. Thus, spatiotemporal dynamics of these parameters are essential for precision crop management. Airborne or spaceborne earth observation methods based on vegetation and soil observations have sometimes been used with limited success to indirectly understand parameters like soil salinity. These datasets lack spatiotemporal resolution to discern fieldscale heterogeneities, and estimates' accuracy is poor. A Metropolis-Hasting Markov Chain-Monte Carlo (MCMC) based method was developed to estimate field-scale soil salinity by assimilating estimated evapotranspiration (ET) data obtained from aerial canopy temperature sensing with ET outputs from a one-dimensional soil-water transport model. By aligning the two estimated ET values, we inferred anticipated soil salinity levels in a mature pecan orchard (28,951 m2). Our results aligned closely with in-situ measurements with a spatial cross-correlation more than 0.86 and highlighted the expected heterogeneities and nonlinearities. This research offers an approach to refine the current state-of-the-art crop models by accounting for field scale heterogeneities using remotely sensed data. This assimilation method will pave the way for a more inclusive agricultural system modeling that can infer critical but hard-to-measure soil properties from easier-to-obtain remotely sensed datasets. Though this paper concentrates on aerial observations, we anticipate similar methods can be used for satellite-based imagery, especially those with high spatial, temporal, and spectral resolutions.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] An improved analysis of forest carbon dynamics using data assimilation
    Williams, M
    Schwarz, PA
    Law, BE
    Irvine, J
    Kurpius, MR
    GLOBAL CHANGE BIOLOGY, 2005, 11 (01) : 89 - 105
  • [22] ASSESSING HETEROGENEITY OF TREATMENT EFFECT USING REAL WORLD DATA
    Murray, J. F.
    Kadziola, Z.
    Zagar, A.
    VALUE IN HEALTH, 2014, 17 (07) : A585 - A585
  • [23] Assessing urban-scale spatiotemporal heterogeneous metro station coverage using multi-source mobility data
    Zhang, Guozheng
    Wang, Dianhai
    Chen, Mengwei
    Zeng, Jiaqi
    Cai, Zhengyi
    JOURNAL OF TRANSPORT GEOGRAPHY, 2025, 123
  • [24] Assessing Post-Storm Forest Dynamics in the Pyrenees Using High-Resolution LIDAR Data and Aerial Photographs
    ángela BLáZQUEZ-CASADO
    José R.GONZáLEZ-OLABARRIA
    Santiago MARTíN-ALCóN
    Ariadna JUST
    Mariló CABRé
    Lluís COLL
    JournalofMountainScience, 2015, 12 (04) : 841 - 853
  • [25] Assessing post-storm forest dynamics in the pyrenees using high-resolution LIDAR data and aerial photographs
    Blazquez-Casado, Angela
    Gonzalez-Olabarria, Jose R.
    Martin-Alcon, Santiago
    Just, Ariadna
    Cabre, Marilo
    Coll, Lluis
    JOURNAL OF MOUNTAIN SCIENCE, 2015, 12 (04) : 841 - 853
  • [26] Assessing post-storm forest dynamics in the pyrenees using high-resolution LIDAR data and aerial photographs
    Ángela Blázquez-Casado
    José R. González-Olabarria
    Santiago Martin-Alcón
    Ariadna Just
    Mariló Cabré
    Lluís Coll
    Journal of Mountain Science, 2015, 12 : 841 - 853
  • [27] Assessing Spatiotemporal Characteristics of Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data
    Zhao, Min
    Cheng, Weiming
    Zhou, Chenghu
    Li, Manchun
    Huang, Kun
    Wang, Nan
    REMOTE SENSING, 2018, 10 (01):
  • [28] Using noisy or incomplete data to discover models of spatiotemporal dynamics
    Reinbold, Patrick A. K.
    Gurevich, Daniel R.
    Grigoriev, Roman O.
    PHYSICAL REVIEW E, 2020, 101 (01)
  • [29] Assessing spatiotemporal variations of forest carbon density using bi-temporal discrete aerial laser scanning data in Chinese boreal forests
    Zhiyong Qi
    Shiming Li
    Yong Pang
    Guang Zheng
    Dan Kong
    Zengyuan Li
    ForestEcosystems, 2023, 10 (05) : 547 - 560
  • [30] Assessing spatiotemporal variations of forest carbon density using bi-temporal discrete aerial laser scanning data in Chinese boreal forests
    Qi, Zhiyong
    Li, Shiming
    Pang, Yong
    Zheng, Guang
    Kong, Dan
    Li, Zengyuan
    FOREST ECOSYSTEMS, 2023, 10