Fine-Grained Semantics Enhanced Contrastive Learning for Graphs

被引:0
|
作者
Liu, Youming [1 ]
Shu, Lin [1 ]
Chen, Chuan [1 ]
Zheng, Zibin [2 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Software Engn, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Contrastive learning; Histograms; Accuracy; Training; Synthetic data; Fuses; semantic information; fine-grained; graph motifs; node classification; ROUGH SETS; OVERLAP FUNCTIONS; SELECTION; (I;
D O I
10.1109/TKDE.2024.3466990
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph contrastive learning defines a contrastive task to pull similar instances close and push dissimilar instances away. It learns discriminative node embeddings without supervised labels, which has aroused increasing attention in the past few years. Nevertheless, existing methods of graph contrastive learning ignore the differences between diverse semantics existed in graphs, which learn coarse-grained node embeddings and lead to sub-optimal performances on downstream tasks. To bridge this gap, we propose a novel Fine-grained Semantics enhanced Graph Contrastive Learning (FSGCL) in this paper. Concretely, FSGCL first introduces a motif-based graph construction, which employs graph motifs to extract diverse semantics existed in graphs from the perspective of input data. Then, the semantic-level contrastive task is explored to further enhance the utilization of fine-grained semantics from the perspective of model training. Experiments on five real-world datasets demonstrate the superiority of our proposed FSGCL over state-of-the-art methods. To make the results reproducible, we will make our codes public on GitHub after this paper is accepted.
引用
收藏
页码:8238 / 8250
页数:13
相关论文
共 50 条
  • [41] Enhanced Deep Learning Framework for Fine-Grained Segmentation of Fashion and Apparel
    Usmani, Usman Ahmad
    Happonen, Ari
    Watada, Junzo
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 29 - 44
  • [42] Category-Contrastive Fine-Grained Crowd Counting and Beyond
    Zhang, Meijing
    Chen, Mengxue
    Li, Qi
    Chen, Yanchen
    Lin, Rui
    Li, Xiaolian
    He, Shengfeng
    Liu, Wenxi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 477 - 488
  • [43] Learning enhanced features and inferring twice for fine-grained image classification
    Xuan Nie
    Bosong Chai
    Luyao Wang
    Qiyu Liao
    Min Xu
    Multimedia Tools and Applications, 2023, 82 : 14799 - 14813
  • [44] Strengthen contrastive semantic consistency for fine-grained image classification
    Wang, Yupeng
    Wang, Yongli
    Ye, Qiaolin
    Lang, Wenxi
    Xu, Can
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (02)
  • [45] Fine-Grained Crowdsourcing for Fine-Grained Recognition
    Jia Deng
    Krause, Jonathan
    Li Fei-Fei
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 580 - 587
  • [46] Learning to Navigate for Fine-Grained Classification
    Yang, Ze
    Luo, Tiange
    Wang, Dong
    Hu, Zhiqiang
    Gao, Jun
    Wang, Liwei
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 438 - 454
  • [47] Unsupervised Deep Hashing With Fine-Grained Similarity-Preserving Contrastive Learning for Image Retrieval
    Cao, Hu
    Huang, Lei
    Nie, Jie
    Wei, Zhiqiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 4095 - 4108
  • [48] Self-Supervised GlobalLocal Contrastive Learning for Fine-Grained Change Detection in VHR Images
    Jiang, Fenlong
    Gong, Maoguo
    Zheng, Hanhong
    Liu, Tongfei
    Zhang, Mingyang
    Liu, Jialu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [49] Fine-Grained Partial Label Learning
    Chen, Cheng
    Lyu, Yueming
    Yu, Xingrui
    Li, Jing
    Tsang, Ivor W.
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 587 - 596
  • [50] The Fine-Grained Impact of Gaming (?) on Learning
    Gong, Yue
    Beck, Joseph E.
    Heffernan, Neil T.
    Forbes-Summers, Elijah
    INTELLIGENT TUTORING SYSTEMS, PT 1, PROCEEDINGS, 2010, 6094 : 194 - 203