Topology Identification of Distribution Network Based on Multi-label Classification and CNN

被引:0
|
作者
Long, Huan [1 ]
Shi, Ziqing [1 ]
Zhao, Jingtao [2 ]
Zheng, Shu [2 ]
Zhang, Xiaoyan [2 ]
Xie, Wenqiang [3 ]
机构
[1] School of Electric Engineering, Southeast University, Nanjing,210096, China
[2] NARI Group Corporation, State Grid Electric Power Research Institute) Co., Ltd., Nanjing,211106, China
[3] State Grid Jiangsu Electric Power Co., Ltd., Nanjing,210024, China
来源
关键词
Inference engines - Multiprotocol Label Switching - Network topology;
D O I
10.13336/j.1003-6520.hve.20231033
中图分类号
学科分类号
摘要
To adapt to the operation characteristics of the new distribution network, the distribution network switches require frequent adjustments to their structures. However, it is difficult to timely and accurately obtain the real-time topology of the distribution network, which poses challenges for situational awareness of the network. Traditional topology identification methods based on state estimation are difficult to apply online due to their high computational complexity and the large number of topology categories in large-scale distribution network. To address these challenges, this paper proposes a distribution network topology identification method based on multi-label classification and convolutional neural network (CNN). By exploring the multi-mapping relationship between measured voltage data and switch states, a multi-label classification mechanism is introduced to encode the distribution network topology. The switches are physically mapped to the topology identification model output and a CNN is used to build a multi-label classifier, achieving accurate topology identification. Verification of the proposed method is conducted using a revised IEEE 123-node distribution network, and experimental results show that it has a high topology recognition accuracy. Additionally, the model demonstrates better inference capability for unknown topologies outside the training sample space, making it more suitable for practical topology identification scenarios. The superiority and robustness of the proposed method can be verified. © 2024 Science Press. All rights reserved.
引用
收藏
页码:4520 / 4529
相关论文
共 50 条
  • [41] Label distribution feature selection for multi-label classification with rough set
    Qian, Wenbin
    Huang, Jintao
    Wang, Yinglong
    Xie, Yonghong
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 128 : 32 - 55
  • [42] Variational Continuous Label Distribution Learning for Multi-Label Text Classification
    Zhao, Xingyu
    An, Yuexuan
    Xu, Ning
    Geng, Xin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2716 - 2729
  • [43] Three-way graph convolutional network for multi-label classification in multi-label information system
    Yu, Bin
    Xie, Hengjie
    Fu, Yu
    Xu, Zeshui
    APPLIED SOFT COMPUTING, 2024, 161
  • [44] A Hierarchical Label Network for Multi-label EuroVoc Classification of Legislative Contents
    Caled, Danielle
    Won, Miguel
    Martins, Bruno
    Silva, Mario J.
    DIGITAL LIBRARIES FOR OPEN KNOWLEDGE, TPDL 2019, 2019, 11799 : 238 - 252
  • [45] Boosting-based Multi-label Classification
    Kajdanowicz, Tomasz
    Kazienko, Przemyslaw
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2013, 19 (04) : 502 - 520
  • [46] Multi-label Anomaly Classification Based on Electrocardiogram
    Li, Chenyang
    Sun, Le
    HEALTH INFORMATION SCIENCE, HIS 2021, 2021, 13079 : 171 - 178
  • [47] Biclustering-based multi-label classification
    Schmitke, Luiz Rafael
    Paraiso, Emerson Cabrera
    Nievola, Julio Cesar
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4861 - 4898
  • [48] Topic Model Based Multi-Label Classification
    Padmanabhan, Divya
    Bhat, Satyanath
    Shevade, Shirish
    Narahari, Y.
    2016 IEEE 28TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2016), 2016, : 996 - 1003
  • [49] Multi-label classification with label clusters
    Gatto, Elaine Cecilia
    Ferrandin, Mauri
    Cerri, Ricardo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (02) : 1741 - 1785
  • [50] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419