E-waste challenges of generative artificial intelligence

被引:3
|
作者
Wang, Peng [1 ,2 ]
Zhang, Ling-Yu [1 ]
Tzachor, Asaf [3 ,4 ]
Chen, Wei-Qiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Urban Environm & Hlth, Inst Urban Environm, Xiamen, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Reichman Univ, Sch Sustainabil, Herzliyya, Israel
[4] Univ Cambridge, Ctr Study Existential Risk, Cambridge, England
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 11期
基金
中国国家自然科学基金;
关键词
AI;
D O I
10.1038/s43588-024-00712-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Generative artificial intelligence (GAI) requires substantial computational resources for model training and inference, but the electronic-waste (e-waste) implications of GAI and its management strategies remain underexplored. Here we introduce a computational power-driven material flow analysis framework to quantify and explore ways of managing the e-waste generated by GAI, with a particular focus on large language models. Our findings indicate that this e-waste stream could increase, potentially reaching a total accumulation of 1.2-5.0 million tons during 2020-2030, under different future GAI development settings. This may be intensified in the context of geopolitical restrictions on semiconductor imports and the rapid server turnover for operational cost savings. Meanwhile, we show that the implementation of circular economy strategies along the GAI value chain could reduce e-waste generation by 16-86%. This underscores the importance of proactive e-waste management in the face of advancing GAI technologies. Generative artificial intelligence (GAI) is driving a surge in e-waste due to intensive computational infrastructure needs. This study emphasizes the necessity for proactive implementation of circular economy practices throughout GAI value chains.
引用
收藏
页码:818 / 823
页数:6
相关论文
共 50 条
  • [11] Promises and challenges of generative artificial intelligence for human learning
    Yan, Lixiang
    Greiff, Samuel
    Teuber, Ziwen
    Gasevic, Dragan
    NATURE HUMAN BEHAVIOUR, 2024, 8 (10): : 1839 - 1850
  • [12] Generative Artificial Intelligence: Current Trends, Issues, and Challenges
    Vyas, Piyush
    Vyas, Gitika
    IT PROFESSIONAL, 2025, 27 (01) : 20 - 26
  • [13] Challenges of E-waste management in Sabah: A systematic review
    Rahman, Dayang Masleha Mohd
    Dusim, Haidy Henry
    Kassim, Asiyah
    ENVIRONMENT-BEHAVIOUR PROCEEDINGS JOURNAL, 2024, 9 : 313 - 319
  • [14] Global challenges for e-waste management: the societal implications
    Magalini, Federico
    REVIEWS ON ENVIRONMENTAL HEALTH, 2016, 31 (01) : 137 - 140
  • [15] A review of the recent development, challenges, and opportunities of electronic waste (e-waste)
    Shahabuddin, M.
    Uddin, M. Nur
    Chowdhury, J. I.
    Ahmed, S. F.
    Uddin, M. N.
    Mofijur, M.
    Uddin, M. A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (04) : 4513 - 4520
  • [16] A review of the recent development, challenges, and opportunities of electronic waste (e-waste)
    M. Shahabuddin
    M. Nur Uddin
    J. I. Chowdhury
    S. F. Ahmed
    M. N. Uddin
    M. Mofijur
    M. A. Uddin
    International Journal of Environmental Science and Technology, 2023, 20 : 4513 - 4520
  • [17] E-waste not
    Philip Ball
    Nature Materials, 2003, 2 (2) : 76 - 76
  • [18] Staying ahead with generative artificial intelligence for learning: challenges and opportunities
    Lee, Alwyn Vwen Yen
    ASIA PACIFIC JOURNAL OF EDUCATION, 2024, 44 (01) : 81 - 93
  • [19] Generative artificial intelligence in surgery: balancing innovation with ethical challenges
    Dhawan, Ravi
    Nair, Akshay
    Shay, Denys
    JOURNAL OF PLASTIC RECONSTRUCTIVE AND AESTHETIC SURGERY, 2024, 90 : 47 - 48
  • [20] Diffusion Models and Generative Artificial Intelligence: Frameworks, Applications and Challenges
    Kumar, Pranjal
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2025,