Scene-Embedded Generative Adversarial Networks for Semi-Supervised SAR-to-Optical Image Translation

被引:0
|
作者
Guo, Zhe [1 ]
Luo, Rui [1 ]
Cai, Qinglin [1 ]
Liu, Jiayi [1 ]
Zhang, Zhibo [1 ]
Mei, Shaohui [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Optical imaging; Optical sensors; Radar polarimetry; Vectors; Optical losses; Generators; Optical fiber networks; Measurement; Generative adversarial networks; Visualization; Scene assist; scene information fusion; synthetic aperture radar (SAR)-to-optical image translation (S2OIT);
D O I
10.1109/LGRS.2024.3471553
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
SAR-to-optical image translation (S2OIT) improves the interpretability of SAR images, providing a clearer visual insight that can significantly enhance remote sensing applications. Compared to supervised S2OIT methods that are limited by the paired dataset, unsupervised methods have shown more advantages in practical applications. However, the existing unsupervised S2OIT approaches, designed for unpaired datasets, often struggle to generalize well to scenes that are significantly different from the training data, potentially leading to mistranslations in diverse scenarios. To address the above issues, we propose a scene-embedded generative adversarial network for semi-supervised S2OIT called ScE-GAN, which utilizes the scene category labels in addition to unpaired image dataset, thus effectively improving the robustness of S2OIT under different scenes without increasing complex network structure and learning cost. In particular, a scene information fusion generator (SIFG) is proposed to learn the relationship between the image and the scene directly through scene category guidance and multihead attention, enhancing its ability to adapt to scene changes. Moreover, a scene-assisted discriminator (SAD) is presented cooperating with the generator to ensure both image authenticity and scene accuracy. Extensive experiments on two challenging datasets SEN1-2 and QXS-SAROPT demonstrate that our method outperforms the state-of-the-art methods in both objective and subjective evaluations. Our code and more details are available at https://github.com/lr-dddd/ScE-GAN.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Comparative Analysis of Edge Information and Polarization on SAR-to-Optical Translation Based on Conditional Generative Adversarial Networks
    Zhang, Qian
    Liu, Xiangnan
    Liu, Meiling
    Zou, Xinyu
    Zhu, Lihong
    Ruan, Xiaohao
    REMOTE SENSING, 2021, 13 (01) : 1 - 20
  • [32] GENERATIVE ADVERSARIAL SEMI-SUPERVISED NETWORK FOR MEDICAL IMAGE SEGMENTATION
    Li, Chuchen
    Liu, Huafeng
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 303 - 306
  • [33] Medical image segmentation with generative adversarial semi-supervised network
    Li, Chuchen
    Liu, Huafeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (24):
  • [34] SVGAN: Semi-supervised Generative Adversarial Network for Image Captioning
    Zhang, Yi
    Zeng, Wei
    He, Gangqiang
    Liu, Yueyuan
    2020 IEEE CONFERENCE ON TELECOMMUNICATIONS, OPTICS AND COMPUTER SCIENCE (TOCS), 2020, : 296 - 299
  • [35] Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification
    He, Zhi
    Liu, Han
    Wang, Yiwen
    Hu, Jie
    REMOTE SENSING, 2017, 9 (10)
  • [36] Semi-Supervised Semantic Image Segmentation by Deep Diffusion Models and Generative Adversarial Networks
    Diaz-Frances, Jose Angel
    Fernandez-Rodriguez, Jose David
    Thurnhofer-Hemsi, Karl
    Lopez-Rubio, Ezequiel
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2024, 34 (11)
  • [37] Semi-supervised generative adversarial networks with spatial coevolution for enhanced image generation and classification
    Toutouh, Jamal
    Nalluru, Subhash
    Hemberg, Erik
    O'Reilly, Una-May
    APPLIED SOFT COMPUTING, 2023, 148
  • [38] Staged Sketch-to-Image Synthesis via Semi-supervised Generative Adversarial Networks
    Li, Zeyu
    Deng, Cheng
    Yang, Erkun
    Tao, Dacheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2694 - 2705
  • [39] Semi-supervised Text Regression with Conditional Generative Adversarial Networks
    Li, Tao
    Liu, Xudong
    Su, Shihan
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5375 - 5377
  • [40] A Semi-Supervised Image-to-Image Translation Framework for SAR-Optical Image Matching
    Du, Wen-Liang
    Zhou, Yong
    Zhu, Hancheng
    Zhao, Jiaqi
    Shao, Zhiwen
    Tian, Xiaolin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19