Multiscale Global Attention Network With Edge Perceptron for Automatic Road Extraction From Remote Sensing Imagery

被引:0
|
作者
Yuan, Qinglie [1 ]
机构
[1] Panzhihua Univ, Sch Civil & Architecture Engn, Panzhihua 617000, Peoples R China
关键词
Roads; Transformers; Accuracy; Sensors; Semantics; Image edge detection; Feature extraction; Remote sensing; Mathematical models; Decoding; Convolutional neural network (CNN); deep learning; remote sensing image; road extraction; transformer;
D O I
10.1109/LGRS.2024.3478847
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Automatic road interpretation using remote sensing images is crucial for intelligent city construction and is widely applied in various domains such as automatic driving navigation, cartography, and urban planning. Recently, deep learning algorithms, especially for convolutional neural networks (CNNs) and Transformers, have been utilized with large-scale remote sensing datasets to extract abundant semantic features, significantly improving the accuracy and efficiency of road extraction. However, these models ignore the correlation between multiscale local context and global semantics, which could cause fragmentary prediction in complex remote sensing environments. In addition, the edge features of roads often cannot be accurately constructed due to the lack of semantic guidance. To address the aforementioned issues, this study developed a hybrid deep neural network integrating CNN and Transformer structures. In the encoder, a multiscale global attention pyramid (MGAP) is constructed to enhance the overall semantic representation of the road with a local context. The road edge perceptron is designed in the decoder to improve edge prediction accuracy by establishing hierarchical spatial attention. Quantitative experiments and visual analysis on two public road datasets have confirmed that the proposed network architecture and modules can improve road extraction accuracy with high efficiency (achieving an average 71% IOU and 83% F1 score).
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A neural network architecture for automatic extraction of oceanographic features in satellite remote sensing imagery.
    Askari, F
    Zerr, B
    OCEANS'98 - CONFERENCE PROCEEDINGS, VOLS 1-3, 1998, : 1017 - 1021
  • [42] Aerial Remote Sensing Image Cascaded Road Detection Network Based on Edge Sensing Module and Attention Module
    Liu, Dongyang
    Zhang, Junping
    Liu, Kun
    Zhang, Ye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [43] A Road-Detail Preserving Framework for Urban Road Extraction From VHR Remote Sensing Imagery
    Wang, Ziye
    Luo, Zheng
    Zhu, Qiqi
    Peng, Sisi
    Ran, Longli
    Zhang, Yanan
    Wang, Lizeng
    Chen, Yuling
    Hu, Zhe
    Luo, Jiancheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [44] A Multiscale Attention Network for Remote Sensing Scene Images Classification
    Zhang, Guokai
    Xu, Weizhe
    Zhao, Wei
    Huang, Chenxi
    Ng, Eddie Yk
    Chen, Yongyong
    Su, Jian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 9530 - 9545
  • [45] Efficient Occluded Road Extraction from High-Resolution Remote Sensing Imagery
    Feng, Dejun
    Shen, Xingyu
    Xie, Yakun
    Liu, Yangge
    Wang, Jian
    REMOTE SENSING, 2021, 13 (24)
  • [46] A new method of road extraction from high-resolution remote sensing imagery
    Ni, Cui
    Guan, Zequn
    Ye, Qin
    SIXTH INTERNATIONAL SYMPOSIUM ON DIGITAL EARTH: MODELS, ALGORITHMS, AND VIRTUAL REALITY, 2010, 7840
  • [47] DA-CapsUNet: A Dual-Attention Capsule U-Net for Road Extraction from Remote Sensing Imagery
    Ren, Yongfeng
    Yu, Yongtao
    Guan, Haiyan
    REMOTE SENSING, 2020, 12 (18) : 1 - 17
  • [48] Information extraction from remote sensing imagery
    Huang, Xin
    Li, Jiayi
    Liao, Wenzhi
    Chanussot, Jocelyn
    Geo-Spatial Information Science, 2017, 20 (04) : 297 - 298
  • [49] Multiscale Edge-Guided Network for Accurate Cultivated Land Parcel Boundary Extraction From Remote Sensing Images
    Xu, Yongyang
    Zhu, Zhihao
    Guo, Mingqiang
    Huang, Ying
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 20
  • [50] BiReNet: Bilateral Network with Feature Aggregation and Edge Detection for Remote Sensing Images Road Extraction
    Liu, Peng
    Qian, Yurong
    Wei, Hongyang
    Qin, Yugang
    Fan, Yingying
    PATTERN RECOGNITION AND COMPUTER VISION, PT XIII, PRCV 2024, 2025, 15043 : 401 - 415