Moisture Exposure as Pretreatment of Sulfide Solid Electrolytes for All-Solid-State Batteries

被引:0
|
作者
Sano, Hikaru [1 ]
Morino, Yusuke [1 ]
Shiota, Akihiro [1 ]
Takahashi, Tsukasa [2 ]
Miyashita, Norihiko [2 ]
Kawamoto, Koji [1 ]
机构
[1] Consortium for Lithium Ion Battery Technology and Evaluation Center (LIBTEC), 1-8-31 Midorigaoka, Osaka, Ikeda,563-8577, Japan
[2] Mitsui Mining and Smelting Co., Ltd., 1333-2 Haraichi, Saitama, Ageo,362-0021, Japan
关键词
Carbonation - Electrolytes - Lithium sulfur batteries - Photoionization - Solid-State Batteries;
D O I
10.5796/electrochemistry.24-00090
中图分类号
学科分类号
摘要
Sulfide all-solid-state batteries have been actively studied for practical use in vehicle applications. Modifications are often required at the interface between the sulfide solid electrolyte and oxide cathode active material. Scholars have reported that only the surface of the sulfide solid electrolyte is degraded by moisture exposure at a dew point equal to that of a dry room for common lithium-ion battery fabrication and that the surface-degraded material contains lithium carbonate and other lithium salts. Additionally, researchers have reported that lithium salts including lithium carbonate are effective for surface modification of cathode active materials. This paper reports how lithium carbonate is formed by the reaction of a carbon-free solid electrolyte with carbon-free water and that degraded surface of sulfide solid electrolyte by exposure to moisture acts as an effective modifying layer at the interface between the active material and solid electrolyte for all-solid-state batteries. © The Author(s) 2024.
引用
收藏
相关论文
共 50 条
  • [41] Analysis of Interfacial Effects in All-Solid-State Batteries with Thiophosphate Solid Electrolytes
    Neumann, Anton
    Randau, Simon
    Becker-Steinberger, Katharina
    Danner, Timo
    Hein, Simon
    Ning, Ziyang
    Marrow, James
    Richter, Felix H.
    Janek, Juergen
    Latz, Arnulf
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (08) : 9277 - 9291
  • [42] Review on solid electrolytes for all-solid-state lithium-ion batteries
    Zheng, Feng
    Kotobuki, Masashi
    Song, Shufeng
    Lai, Man On
    Lu, Li
    JOURNAL OF POWER SOURCES, 2018, 389 : 198 - 213
  • [43] Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective
    Hou, Wenru
    Guo, Xianwei
    Shen, Xuyang
    Amine, Khali
    Yu, Haijun
    Lu, Jun
    NANO ENERGY, 2018, 52 : 279 - 291
  • [44] Critical challenges and progress of solid garnet electrolytes for all-solid-state batteries
    Shen, X.
    Zhang, Q.
    Ning, T.
    Liu, T.
    Luo, Y.
    He, X.
    Luo, Z.
    Lu, A.
    MATERIALS TODAY CHEMISTRY, 2020, 18
  • [45] Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries
    Li Liu
    Dechao Zhang
    Xijun Xu
    Zhengbo Liu
    Jun Liu
    Chemical Research in Chinese Universities, 2021, 37 : 210 - 231
  • [46] Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries
    Liu, Li
    Zhang, Dechao
    Xu, Xijun
    Liu, Zhengbo
    Liu, Jun
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2021, 37 (02) : 210 - 231
  • [47] Designing the Interface Layer of Solid Electrolytes for All-Solid-State Lithium Batteries
    Xia, Qian
    Yuan, Shuoguo
    Zhang, Qiang
    Huang, Can
    Liu, Jun
    Jin, Hongyun
    ADVANCED SCIENCE, 2024, 11 (29)
  • [48] Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries
    Chen, Guanghai
    Bai, Ying
    Gao, Yongsheng
    Wu, Feng
    Wu, Chuan
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (05)
  • [49] Status and prospects of hydroborate electrolytes for all-solid-state batteries
    Duchene, Leo
    Remhof, Arndt
    Hagemann, Hans
    Battaglia, Corsin
    ENERGY STORAGE MATERIALS, 2020, 25 (25) : 782 - 794
  • [50] Overview of Inorganic Electrolytes for All-Solid-State Sodium Batteries
    Radjendirane, Aakash Carthick
    Maurya, Dheeraj Kumar
    Ren, Juanna
    Hou, Hua
    Algadi, Hassan
    Xu, Ben Bin
    Guo, Zhanhu
    Angaiah, Subramania
    LANGMUIR, 2024, 40 (32) : 16690 - 16712