Split Computing With Scalable Feature Compression for Visual Analytics on the Edge

被引:0
|
作者
Yuan, Zhongzheng [1 ]
Rawlekar, Samyak [2 ]
Garg, Siddharth [1 ]
Erkip, Elza [1 ]
Wang, Yao [1 ]
机构
[1] NYU, Elect & Comp Engn Dept, Tandon Sch Engn, Brooklyn, NY 11201 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
Image coding; Computational modeling; Task analysis; Servers; Performance evaluation; Bit rate; Analytical models; Computer vision; feature compression; object detection; split computing; COLLABORATIVE INTELLIGENCE;
D O I
10.1109/TMM.2024.3406165
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Running deep visual analytics models for real-time applications is challenging for mobile devices. Offloading the computation to edge server can mitigate computation bottleneck at the mobile device, but may decrease the analytics performance due to the necessity of compressing the image data. We consider a "split computing" system to offload a part of the deep learning model's computation and introduce a novel learned feature compression approach with lightweight computation. We demonstrate the effectiveness of the split computing pipeline in performing computation offloading for the problems of object detection and image classification. Compared to compressing the raw images at the mobile, and running the analytics model on the decompressed images at the server, the proposed feature-compression approach can achieve significantly higher analytics performance at the same bit rate, while reducing the complexity at the mobile. We further propose a scalable feature compression approach, which facilitates adaptation to network bandwidth dynamics, while having comparable performance to the non-scalable approach.
引用
收藏
页码:10121 / 10133
页数:13
相关论文
共 50 条
  • [31] A feature-based scalable codec for image compression
    Kuo, LC
    Wang, SJ
    AINA 2005: 19TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 2, 2005, : 87 - 90
  • [32] Scalable Resource Allocation Techniques for Edge Computing Systems
    Rublein, Caroline
    Mehmeti, Fidan
    Gunes, Taha D.
    Stein, Sebastian
    La Porta, Thomas F.
    2022 31ST INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2022), 2022,
  • [33] AGAMI: Scalable Visual Analytics over Multidimensional Data Streams
    Lu, Mingxin
    Wong, Edmund
    Barajas, Daniel
    Li, Xiaochen
    Ogundipe, Mosopefoluwa
    Wilson, Nate
    Garg, Pragya
    Joshi, Alark
    Malensek, Matthew
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT 2020), 2020, : 57 - 66
  • [34] Intelligent Edge Caching and Computing for Scalable Information Systems
    Zhang, Yudong
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2023, 10 (05) : 1 - 3
  • [35] On Scalable In-Network Operator Placement for Edge Computing
    Gedeon, Julien
    Stein, Michael
    Wang, Lin
    Muehlhaeuser, Max
    2018 27TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN), 2018,
  • [36] Optimal Resource Allocation for Scalable Mobile Edge Computing
    Gao, Yunlong
    Cui, Ying
    Wang, Xinyun
    Liu, Zhi
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (07) : 1211 - 1214
  • [37] Optimized Placement of Scalable IoT Services in Edge Computing
    Maia, Adyson M.
    Ghamri-Doudane, Yacine
    Vieira, Dario
    de Castro, Miguel F.
    2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019, : 189 - 197
  • [38] BigMEC: Scalable Service Migration for Mobile Edge Computing
    Brandherm, Florian
    Gedeon, Julien
    Abboud, Osama
    Muehlhaeuser, Max
    2022 IEEE/ACM 7TH SYMPOSIUM ON EDGE COMPUTING (SEC 2022), 2022, : 136 - 148
  • [39] Progressive Feature Transmission for Split Classification at the Wireless Edge
    Lan, Qiao
    Zeng, Qunsong
    Popovski, Petar
    Gunduz, Deniz
    Huang, Kaibin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (06) : 3837 - 3852
  • [40] A New Visual Analytics Toolkit for ATLAS Computing Metadata
    Grigorieva, M. A.
    Alekseev, A. A.
    Galkin, T. P.
    Klimentov, A. A.
    Korchuganova, T. A.
    Milman, I. E.
    Padolski, S. V.
    Pilyugin, V. V.
    Titov, M. A.
    19TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2020, 1525