New Complex Sinusoidal Waveform-Based Zero-Knowledge Proof Systems for Efficient Anonymous Authentication

被引:0
|
作者
Kim, Youhyun [1 ]
Jeong, Ongee [1 ]
Choi, Kevin [2 ]
Moon, Inkyu [3 ]
Javidi, Bahram [4 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol, Dept Robot & Mechatron Engn, Daegu 42988, South Korea
[2] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[3] Daegu Gyeongbuk Inst Sci & Technol, Dept Robot Engn, Daegu 42988, South Korea
[4] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT USA
基金
新加坡国家研究基金会;
关键词
Authentication; Protocols; Servers; Visualization; Optical imaging; Optical sensors; Moon; Internet of Things; High-speed optical techniques; Robustness; Anonymous authentication system; Feige-Fiat-Shamir (FFS) protocol; image cryptography; interactive proof system; zero-knowledge proof system; MULTIPLE-IMAGE ENCRYPTION; INFORMATION; INTERNET; THINGS; IOT;
D O I
10.1109/TSMC.2024.3460801
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Zero-knowledge proof systems based on Feige-Fiat-Shamir (FFS) protocol are an interactive protocol between two anonymous authentication parties. However, they require heavy computations because of many iterations for reducing the probability that an attacker can trick a remote server. The algorithm's time complexity rapidly increases with the total number of the challenge values, which should be unpredictable. Hence, the FFS protocol is not suitable for practical zero-knowledge proof systems. In this study, we propose new zero-knowledge proof systems based on phase mask generation that are complex sinusoidal waveform versions of the FFS algorithm for efficient anonymous authentication in the diverse interactive systems. The proposed anonymous authentication schemes need a single iteration only, allowing for efficient uses of a random challenge mask with large bit-depth. The proposed schemes allow the verifier to verify that the prover knows the secret mask, such as binary pattern, visual image, or hologram, which are the prover's secrets, without revealing any information about it to anyone else, including the verifier. Various numerical simulations demonstrate the proposed schemes' feasibility and robustness.
引用
收藏
页码:7710 / 7720
页数:11
相关论文
共 50 条
  • [31] Zero-Knowledge Authentication Protocol Based on Alternative Mode in RFID Systems
    Liu, Hong
    Ning, Huansheng
    IEEE SENSORS JOURNAL, 2011, 11 (12) : 3235 - 3245
  • [32] Zero-knowledge Location Proof Based on Blockchain
    Yu Rongwei
    Zhou Boxiao
    Wang Lina
    Zhu Xinyan
    Xie Huihua
    Xie Hongjun
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (09) : 2142 - 2149
  • [33] Zero-knowledge Location Proof Based on Blockchain
    Yu R.
    Zhou B.
    Wang L.
    Zhu X.
    Xie H.
    Xie H.
    Zhou, Boxiao (boxiao@whu.edu.cn), 1600, Science Press (42): : 2142 - 2149
  • [34] Pseudo trust: Zero-knowledge authentication in anonymous P2Ps
    Lu, Li
    Han, Jinsong
    Liu, Yunhao
    Hu, Lei
    Huai, Jinpeng
    Ni, Lionel M.
    Ma, Jian
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2008, 19 (10) : 1325 - 1337
  • [35] Anonymous Authentication and Information Sharing Scheme Based on Blockchain and Zero Knowledge Proof for VANETs
    Zhang, Xiaohong
    Chen, Xingxing
    Liu, Shuling
    Zhong, Shaojiang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (12) : 18043 - 18058
  • [36] Enhancing Unmanned Aerial Vehicle Security: A Zero-Knowledge Proof Approach with Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge for Authentication and Location Proof
    Koulianos, Athanasios
    Paraskevopoulos, Panagiotis
    Litke, Antonios
    Papadakis, Nikolaos K.
    SENSORS, 2024, 24 (17)
  • [37] Zero-knowledge proof systems for QMA (Extended Abstract)
    Broadbent, Anne
    Ji, Zhengfeng
    Song, Fang
    Watrous, John
    2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2016, : 31 - 40
  • [38] NON-INTERACTIVE ZERO-KNOWLEDGE PROOF SYSTEMS
    DESANTIS, A
    MICALI, S
    PERSIANO, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 293 : 52 - 72
  • [39] Hybrid commitments and their applications to zero-knowledge proof systems
    Catalano, Dario
    Visconti, Ivan
    THEORETICAL COMPUTER SCIENCE, 2007, 374 (1-3) : 229 - 260
  • [40] Card-Based Zero-Knowledge Proof for the Nearest Neighbor Property: Zero-Knowledge Proof of ABC End View
    Fukasawa, Takuro
    Manabe, Yoshifumi
    SECURITY, PRIVACY, AND APPLIED CRYPTOGRAPHY ENGINEERING, SPACE 2022, 2022, 13783 : 147 - 161