Source-Free Image-Text Matching via Uncertainty-Aware Learning

被引:0
|
作者
Tian, Mengxiao [1 ,2 ]
Yang, Shuo [3 ]
Wu, Xinxiao [1 ,2 ]
Jia, Yunde [3 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[2] Shenzhen MSU BIT Univ, Guangdong Prov Lab Machine Percept & Intelligent C, Shenzhen 518172, Peoples R China
[3] Shenzhen MSU BIT Univ, Guangdong Prov Lab Machine Percept & Intelligent C, Shenzhen 518172, Peoples R China
关键词
Adaptation models; Uncertainty; Noise measurement; Data models; Training; Noise; Visualization; Measurement uncertainty; Computational modeling; Testing; Image-text matching; source-free adaptation; uncertainty-aware learning;
D O I
10.1109/LSP.2024.3488521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When applying a trained image-text matching model to a new scenario, the performance may largely degrade due to domain shift, which makes it impractical in real-world applications. In this paper, we make the first attempt on adapting the image-text matching model well-trained on a labeled source domain to an unlabeled target domain in the absence of source data, namely, source-free image-text matching. This task is challenging since it has no direct access to the source data when learning to reduce the doma in shift. To address this challenge, we propose a simple yet effective method that introduces uncertainty-aware learning to generate high-quality pseudo-pairs of image and text for target adaptation. Specifically, starting with using the pre-trained source model to retrieve several top-ranked image-text pairs from the target domain as pseudo-pairs, we then model uncertainty of each pseudo-pair by calculating the variance of retrieved texts (resp. images) given the paired image (resp. text) as query, and finally incorporate the uncertainty into an objective function to down-weight noisy pseudo-pairs for better training, thereby enhancing adaptation. This uncertainty-aware training approach can be generally applied on all existing models. Extensive experiments on the COCO and Flickr30K datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:3059 / 3063
页数:5
相关论文
共 50 条
  • [41] Visually Source-Free Domain Adaptation via Adversarial Style Matching
    Jing, Mengmeng
    Li, Jingjing
    Lu, Ke
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1032 - 1044
  • [42] IMAGE-TEXT MATCHING WITH SHARED SEMANTIC CONCEPTS
    Miao Lanxin
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [43] Fusion layer attention for image-text matching
    Wang, Depeng
    Wang, Liejun
    Song, Shiji
    Huang, Gao
    Guo, Yuchen
    Cheng, Shuli
    Ao, Naixiang
    Du, Anyu
    NEUROCOMPUTING, 2021, 442 : 249 - 259
  • [44] Stacked Cross Attention for Image-Text Matching
    Lee, Kuang-Huei
    Chen, Xi
    Hua, Gang
    Hu, Houdong
    He, Xiaodong
    COMPUTER VISION - ECCV 2018, PT IV, 2018, 11208 : 212 - 228
  • [45] Semantic Embedding Uncertainty Learning for Image and Text Matching
    Wang, Yan
    Su, Yu-Ting
    Li, Wenhui
    Yan, Chenggang
    Zheng, Bolun
    Li, Xuanya
    Liu, An-An
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 864 - 869
  • [46] Giving Text More Imagination Space for Image-text Matching
    Dong, Xinfeng
    Han, Longfei
    Zhang, Dingwen
    Liu, Li
    Han, Junwei
    Zhang, Huaxiang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6359 - 6368
  • [47] Safe Learning for Uncertainty-Aware Planning via Interval MDP Abstraction
    Jiang, Jesse
    Zhao, Ye
    Coogan, Samuel
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2641 - 2646
  • [48] Team HUGE: Image-Text Matching via Hierarchical and Unified Graph Enhancing
    Li, Bo
    Wu, You
    Li, Zhixin
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 704 - 712
  • [49] Learning Two-Branch Neural Networks for Image-Text Matching Tasks
    Wang, Liwei
    Li, Yin
    Huang, Jing
    Lazebnik, Svetlana
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) : 394 - 407
  • [50] Adversarial Attentive Multi-Modal Embedding Learning for Image-Text Matching
    Wei, Kaimin
    Zhou, Zhibo
    IEEE ACCESS, 2020, 8 (08): : 96237 - 96248