AI-Driven Statistical Modeling for Social Network Analysis

被引:0
|
作者
Zhang, Min [1 ]
机构
[1] Zhengzhou Shengda Univ, Sch Math & Informat Sci, Zhengzhou 451100, Henan, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Forecasting; Predictive models; Feature extraction; Social networking (online); Graph convolutional networks; Data models; Accuracy; Probabilistic logic; Mathematical models; Indexes; Artificial intelligence; Deep learning; Statistical analysis; deep learning; mathematical statistical modeling; social network analysis; information dissemination forecasting;
D O I
10.1109/ACCESS.2024.3477490
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel AI-driven statistical modeling approach for social network analysis, specifically focusing on information dissemination forecasting. The proposed Paradigm-Conscious Bistream Dissemination Framework (PCBDF) addresses the limitations of existing models by simultaneously capturing dynamic customer preferences and chain dependencies. Our framework leverages bistream graph neural networks to separately learn customer and chain embeddings. Specifically, the dynamic graph convolutional network captures customer repost preferences at various granularities, while the hyper-graph convolutional network learns chain hypergraphs and customer relationships. By integrating paradigms of chain embeddings, we enhance the accuracy of information dissemination forecasting. Quantitative evaluations on multiple datasets demonstrate that PCBDF achieves significant improvements over state-of-the-art models, with an increase in mean average precision by up to 14.43% and in Hits scores by up to 16.11% across multiple datasets.
引用
收藏
页码:152766 / 152776
页数:11
相关论文
共 50 条
  • [31] AI-driven laboratory workflows enable operation in the age of social distancing
    Marescotti, Diego
    Narayanamoorthy, Chandrasekaran
    Bonjour, Filipe
    Kuwae, Ken
    Graber, Luc
    Calvino-Martin, Florian
    Ghosh, Samik
    Hoeng, Julia
    SLAS TECHNOLOGY, 2022, 27 (03): : 195 - 203
  • [32] AI-driven hypergraph network of organic chemistry: network statistics and applications in reaction classification
    Mann, Vipul
    Venkatasubramanian, Venkat
    REACTION CHEMISTRY & ENGINEERING, 2023, 8 (03) : 619 - 635
  • [33] AI-Driven glycoproteomic analysis identifies Nasopharyngeal Carcinoma biomarkers
    Rios, Karina Islas
    Lee, Cheng Siang
    Tan, Ke En
    Khoo, Alan Soo Beng
    Low, Chui Thean
    Tan, Lu Ping
    Serie, Daniel
    Aye, Thin Thin
    Campbell, Matthew P.
    GLYCOBIOLOGY, 2023, 33 (11) : 1041 - 1042
  • [34] AI-driven solutions for cybersecurity: comparative analysis and ethical aspects
    Dinu, Andreea
    Vasile, Paul Cristian
    Georgescu, Alexandru
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2024, 34 (03): : 35 - 48
  • [35] A Survey on AI-Driven Mouse Behavior Analysis Applications and Solutions
    Guo, Chaopeng
    Chen, Yuming
    Ma, Chengxia
    Hao, Shuang
    Song, Jie
    BIOENGINEERING-BASEL, 2024, 11 (11):
  • [36] AI-Driven Digital Platform Innovation
    Yablonsky, Sergey A.
    TECHNOLOGY INNOVATION MANAGEMENT REVIEW, 2020, 10 (10): : 4 - 15
  • [37] AI-driven data security and privacy
    Yan, Zheng
    Susilo, Willy
    Bertino, Elisa
    Zhang, Jun
    Yang, Laurence T.
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 172
  • [38] Autonomous (AI-driven) materials science
    Green, Martin L.
    Maruyama, Benji
    Schrier, Joshua
    APPLIED PHYSICS REVIEWS, 2022, 9 (03)
  • [39] Managerial hierarchy in AI-driven organizations
    Baumann, Oliver
    Wu, Brian
    JOURNAL OF ORGANIZATION DESIGN, 2023, 12 (1-2) : 1 - 5
  • [40] AI-driven promoter optimization at MeiraGTx
    Mossotto, E.
    Lee, D.
    Sullivan, J.
    During, M.
    Forbes, A.
    Liu, C. F.
    HUMAN GENE THERAPY, 2022, 33 (23-24) : A50 - A51