Human-robot collaborative assembly and welding: A review and analysis of the state of the art

被引:7
|
作者
Cao, Yue [1 ,2 ]
Zhou, Quan [3 ]
Yuan, Wei [3 ]
Ye, Qiang [4 ]
Popa, Dan [4 ,5 ]
Zhang, YuMing [1 ,2 ]
机构
[1] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA
[2] Univ Kentucky, Inst Sustainable Mfg, Lexington, KY 40506 USA
[3] Hitachi Amer Ltd, R&D Div, 34500 Grand River Ave, Farmington Hills, MI 48335 USA
[4] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[5] Univ Louisville, Louisville Automat & Robot Res Inst, Louisville, KY 40208 USA
基金
美国国家科学基金会;
关键词
Welding; Assembly; Robotics; Monitoring; Control; Human-centric; SYSTEM; SMART; INTERFACE;
D O I
10.1016/j.jmapro.2024.09.044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reviews and analyzes the recent progress in human-robot collaborative (HRC) technologies that enhance assembly and welding processes. It focuses on how the HRC approach helps improve assembly and welding productivity and quality, while enabling complex process operations that cannot be accomplished by humans or robots/machines alone. It also discusses the basic elements in HRC approaches, including (1) human sensors, (2) signal processing for extraction of human intent from sensors, (3) presentation of information to the human for their reaction, obtained from environmental sensors that monitor the environment, machines, and processes, and (4) interface control, which manages how information is presented to the human, what reactions are expected from the human, and what needs to be presented next. Finally, it summarizes the state-of-the-art in the major elements and application accomplishments, identifies challenges for greater benefits, and proposes directions to address these challenges.
引用
收藏
页码:1388 / 1403
页数:16
相关论文
共 50 条
  • [1] Symbiotic human-robot collaborative assembly
    Wang, L.
    Gao, R.
    Vancza, J.
    Krueger, J.
    Wang, X., V
    Makris, S.
    Chryssolouris, G.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2019, 68 (02) : 701 - 726
  • [2] Qualification of a collaborative human-robot welding cell
    Antonelli, Dario
    Astanin, Sergey
    RESEARCH AND INNOVATION IN MANUFACTURING: KEY ENABLING TECHNOLOGIES FOR THE FACTORIES OF THE FUTURE - PROCEEDINGS OF THE 48TH CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2016, 41 : 352 - 357
  • [3] Implementing a Human-Robot Collaborative Assembly Workstation
    Bejarano, Ronal
    Ferrer, Borja Ramis
    Mohammed, Wael M.
    Lastra, Jose L. Martinez
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 557 - 564
  • [4] Brainwaves driven human-robot collaborative assembly
    Mohammed, Abdullah
    Wang, Lihui
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2018, 67 (01) : 13 - 16
  • [5] Benchmarking human-robot collaborative assembly tasks
    Duarte, Laura
    Neves, Miguel
    Neto, Pedro
    RESULTS IN ENGINEERING, 2024, 22
  • [6] Human-robot activity allocation algorithm for the redesign of manual assembly systems into human-robot collaborative assembly
    Gualtieri, Luca
    Rauch, Erwin
    Vidoni, Renato
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2023, 36 (02) : 308 - 333
  • [7] Assessment of Failures in Collaborative Human-Robot Assembly Workcells
    Maisano, Domenico A.
    Antonelli, Dario
    Franceschini, Fiorenzo
    COLLABORATIVE NETWORKS AND DIGITAL TRANSFORMATION, 2019, : 562 - 571
  • [8] Sensorless haptic control for human-robot collaborative assembly
    Liu, Sichao
    Wang, Lihui
    Wang, Xi Vincent
    Wang, Lihui (lihui.wang@iip.kth.se), 1600, Elsevier Ltd (32): : 132 - 144
  • [9] Predicting and preventing mistakes in human-robot collaborative assembly
    Antonelli, D.
    Stadnicka, D.
    IFAC PAPERSONLINE, 2019, 52 (13): : 743 - 748
  • [10] Digital twin driven human-robot collaborative assembly
    Bilberg, Arne
    Malik, Ali Ahmad
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2019, 68 (01) : 499 - 502