BalancedSecAgg: Toward Fast Secure Aggregation for Federated Learning

被引:0
|
作者
Masuda, Hiroki [1 ]
Kita, Kentaro [1 ]
Koizumi, Yuki [1 ]
Takemasa, Junji [1 ]
Hasegawa, Toru [2 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Osaka 5650871, Japan
[2] Shimane Univ, Fac Mat Energy, Matsue, Shimane 6908504, Japan
来源
IEEE ACCESS | 2024年 / 12卷
基金
日本学术振兴会;
关键词
Servers; Costs; Protocols; Computational modeling; Privacy; Data models; Vectors; Polynomials; Federated learning; Training data; Data privacy; Dropout tolerance; federated learning; privacy preservation; secure aggregation;
D O I
10.1109/ACCESS.2024.3491779
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a promising collaborative learning system from the perspective of training data privacy preservation; however, there is a risk of privacy leakage from individual local models of users. Secure aggregation protocols based on local model masking are a promising solution to prevent privacy leakage. Existing secure aggregation protocols sacrifice either computation or communication costs to tolerate user dropouts. A naive secure aggregation protocol achieves a small communication cost by secretly sharing random seeds instead of random masks. However, it requires that a server incurs a substantial computation cost to reconstruct the random masks from the random seeds of dropout users. To avoid such a reconstruction, a state-of-the-art secure aggregation protocol secretly shares random masks. Although this approach avoids the computation cost of mask reconstruction, it incurs a large communication cost due to secretly sharing random masks. In this paper, we design a secure aggregation protocol to mitigate the tradeoff between the computation cost and the communication cost by complementing both types of secure aggregation protocols. In our experiments, our protocol achieves up to 11.41 times faster while achieving the same level of privacy preservation and dropout tolerance as the existing protocols.
引用
收藏
页码:165265 / 165279
页数:15
相关论文
共 50 条
  • [31] Efficient and Secure Federated Learning With Verifiable Weighted Average Aggregation
    Yang, Zhen
    Zhou, Ming
    Yu, Haiyang
    Sinnott, Richard O.
    Liu, Huan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (01): : 205 - 222
  • [32] SASH: Efficient Secure Aggregation Based on SHPRG For Federated Learning
    Liu, Zizhen
    Chen, Si
    Ye, Jing
    Fan, Junfeng
    Li, Huawei
    Li, Xiaowei
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 1243 - 1252
  • [33] Boosting Communication Efficiency of Federated Learning's Secure Aggregation
    Nazemi, Niousha
    Tavallaie, Omid
    Chen, Shuaijun
    Zomaya, Albert Y.
    Holz, Ralph
    2024 54TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS-SUPPLEMENTAL VOLUME, DSN-S 2024, 2024, : 157 - 158
  • [34] The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning
    Chen, Wei-Ning
    Choquette-Choo, Christopher A.
    Kairouz, Peter
    Suresh, Ananda Theertha
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [35] FedGT: Identification of Malicious Clients in Federated Learning With Secure Aggregation
    Xhemrishi, Marvin
    Oestman, Johan
    Wachter-Zeh, Antonia
    Graell i Amat, Alexandre
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 2577 - 2592
  • [36] CodedPaddedFL and CodedSecAgg: Straggler Mitigation and Secure Aggregation in Federated Learning
    Schlegel, Reent
    Kumar, Siddhartha
    Rosnes, Eirik
    Graell i Amat, Alexandre
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (04) : 2013 - 2027
  • [37] Accountable and Verifiable Secure Aggregation for Federated Learning in IoT Networks
    Yang, Xiaoyi
    Zhao, Yanqi
    Chen, Dian
    Yu, Yong
    Du, Xiaojiang
    Guizani, Mohsen
    IEEE NETWORK, 2022, 36 (05): : 173 - 179
  • [38] Secure Aggregation is Insecure: Category Inference Attack on Federated Learning
    Gao, Jiqiang
    Hou, Boyu
    Guo, Xiaojie
    Liu, Zheli
    Zhang, Ying
    Chen, Kai
    Li, Jin
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (01) : 147 - 160
  • [39] Secure and efficient multi-key aggregation for federated learning
    Li, Yanling
    Lai, Junzuo
    Zhang, Rong
    Sun, Meng
    INFORMATION SCIENCES, 2024, 654
  • [40] A Flexible and Scalable Malicious Secure Aggregation Protocol for Federated Learning
    Tang, Jinling
    Xu, Haixia
    Wang, Mingsheng
    Tang, Tao
    Peng, Chunying
    Liao, Huimei
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 4174 - 4187