Fast neural network inverse model to maximize throughput in ultra-wideband WDM systems

被引:0
|
作者
Gan, Zelin [1 ]
Shevchenko, Mykyta [2 ,3 ]
Herzberg, Sam Nallaperuma [4 ]
Savory, Seb J. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Elect Engn Div, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[2] Univ Coll London UCL, Dept Elect & Elect Engn, Roberts Bldg,Torrington Pl, London WC1E 7JE, England
[3] Natl Phys Lab NPL, Hampton Rd, Teddington TW11 0LW, England
[4] Univ Cambridge, Dept Comp Sci & Technol, William Gates Bldg,15 JJ Thomson Ave, Cambridge CB3 0FD, England
来源
OPTICS EXPRESS | 2024年 / 32卷 / 22期
基金
英国工程与自然科学研究理事会;
关键词
Deep neural networks - Inverse problems - Multilayer neural networks - Optical fiber communication - Wavelength division multiplexing;
D O I
10.1364/OE.536632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ultra-wideband systems expand the optical bandwidth in wavelength-division multiplexed (WDM) systems to provide increased capacity using the existing fiber infrastructure. In ultra-wideband transmission, power is transferred from shorter-wavelength WDM channels to longer-wavelength WDM channels due to inelastic inter-channel stimulated Raman scattering. Thus, managing launch power is necessary to improve the overall data throughput. While the launch power optimization problem can be solved by the particle swarm optimization method it is sensitive to the objective value and requires intensive objective calculations. Hence, we first propose a fast and accurate data-driven deep neural network-based physical layer in this paper which can achieve 99% - 100% throughput compared to the semi-analytical approach with more than 2 orders of magnitude improvement in computational time. To further reduce the computational time, we propose an iterative greedy algorithm enabled by the inverse model to well approximate a sub-optimal solution with less than 6% performance degradation but almost 3 orders of magnitude reduction in computational time.
引用
收藏
页码:38642 / 38654
页数:13
相关论文
共 50 条
  • [21] Ultra-wideband transmitted reference systems
    Chao, YL
    Scholtz, RA
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2005, 54 (05) : 1556 - 1569
  • [22] IWOA-RBF Neural Network Ultra-Wideband Antenna Modeling Method
    Nan, Jingchang
    Sun, Wenwen
    2022 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS, IMWS-AMP, 2022,
  • [23] Deep Learning Architecture and Neural Network Optimization of Ultra-Wideband Antenna Modeling
    Nan Jingchang
    Du Youyi
    Wang Minghuan
    Gao Mingming
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (13)
  • [24] An ultra-wideband impulse radio PHY layer model for network simulation
    Rousselot, Jerome
    Decotignie, Jean-Dominique
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2011, 87 (1-2): : 82 - 112
  • [25] Guest Editorial Ultra Wideband WDM Systems
    Napoli, Antonio
    Fischer, Johannes Karl
    Namiki, Shu
    Filer, Mark M.
    Curri, Vittorio
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (05) : 998 - 1001
  • [26] Feedback network for cascaded ultra-wideband amplifiers
    Tiiliharju, Esa
    Koivisto, Tero
    2008 IEEE INTERNATIONAL CONFERENCE ON ULTRA-WIDEBAND, VOL 1, PROCEEDINGS, 2008, 1 : 21 - 24
  • [27] Inverse Modeling Approach for Ultra-Wideband Filters Based on IALO-HBP Neural Networks
    Nan Jingchang
    Du Jingjing
    Gao Mingming
    Xie Huan
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [28] Ultra-wideband WDM transmission using cascaded chirped fiber gratings
    Garrett, L.D.
    Gnauck, A.H.
    Tkach, R.W.
    Agogliati, B.
    Arcangeli, L.
    Scarano, D.
    Gusmeroli, V.
    Tosetti, C.
    Di Maio, G.
    Forghieri, F.
    Conference on Optical Fiber Communication, Technical Digest Series, 1999,
  • [29] Throughput Maximisation in Ultra-wideband Hybrid-amplified Links
    Buglia, Henrique
    Sillekens, Eric
    Galdino, Lidia
    Killey, Robert
    Bayvel, Polina
    2024 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC, 2024,
  • [30] Ultra-Wideband Aided Fast Localization and Mapping System
    Wang, Chen
    Zhang, Handuo
    Thien-Minh Nguyen
    Xie, Lihua
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 1602 - 1609