Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation

被引:0
|
作者
Li M. [1 ,2 ]
Wei L. [1 ]
机构
[1] Faculty of Information Technology, Beijing University of Technology, Beijing
[2] Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing
基金
中国国家自然科学基金;
关键词
A; brain-computer interface; classification; convolutional neural network; data augmentation; deep learning; motor imagery; R; 318; TN; 911.7; TP; 183;
D O I
10.1007/s12204-022-2486-6
中图分类号
学科分类号
摘要
Deep learning has been applied for motor imagery electroencephalogram (MI-EEG) classification in brain-computer system to help people who suffer from serious neuromotor disorders. The inefficiency network and data shortage are the primary issues that the researchers face and need to solve. A novel MI-EEG classification method is proposed in this paper. A plain convolutional neural network (pCNN), which contains two convolution layers, is designed to extract the temporal-spatial information of MI-EEG, and a linear interpolation-based data augmentation (LIDA) method is introduced, by which any two unrepeated trials are randomly selected to generate a new data. Based on two publicly available brain-computer interface competition datasets, the experiments are conducted to confirm the structure of pCNN and optimize the parameters of pCNN and LIDA as well. The average classification accuracy values achieve 90.27% and 98.23%, and the average Kappa values are 0.805 and 0.965 respectively. The experiment results show the advantage of the proposed classification method in both accuracy and statistical consistency, compared with the existing methods. © 2022, Shanghai Jiao Tong University.
引用
收藏
页码:958 / 966
页数:8
相关论文
共 50 条
  • [31] Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network
    Zhang, Kaishuo
    Robinson, Neethu
    Lee, Seong-Whan
    Guan, Cuntai
    NEURAL NETWORKS, 2021, 136 : 1 - 10
  • [32] Convolutional neural network with support vector machine for motor imagery EEG signal classification
    Amira Echtioui
    Wassim Zouch
    Mohamed Ghorbel
    Chokri Mhiri
    Multimedia Tools and Applications, 2023, 82 : 45891 - 45911
  • [33] Convolutional neural network with support vector machine for motor imagery EEG signal classification
    Echtioui, Amira
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45891 - 45911
  • [34] Transfer Learning based Motor Imagery Classification using Convolutional Neural Networks
    Parvan, Milad
    Ghiasi, Amir Rikhtehgar
    Rezaii, Tohid Yousefi
    Farzamnia, Ali
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1825 - 1828
  • [35] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chu, Chaoqin
    Xiao, Qinkun
    Chang, Leran
    Shen, Jianing
    Zhang, Na
    Du, Yu
    Xing, Heng
    Gao, Hui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45747 - 45767
  • [36] Convolutional neural network based features for motor imagery EEG signals classification in brain–computer interface system
    Samaneh Taheri
    Mehdi Ezoji
    Sayed Mahmoud Sakhaei
    SN Applied Sciences, 2020, 2
  • [37] A Novel Simplified Convolutional Neural Network Classification Algorithm of Motor Imagery EEG Signals Based on Deep Learning
    Li, Feng
    He, Fan
    Wang, Fei
    Zhang, Dengyong
    Xia, Yi
    Li, Xiaoyu
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [38] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chaoqin Chu
    Qinkun Xiao
    Leran Chang
    Jianing Shen
    Na Zhang
    Yu Du
    Heng Xing
    Hui Gao
    Multimedia Tools and Applications, 2023, 82 : 45747 - 45767
  • [39] A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
    Echtioui, Amira
    Mlaouah, Ayoub
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    Hamam, Habib
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [40] MACNet: A Multidimensional Attention-Based Convolutional Neural Network for Lower-Limb Motor Imagery Classification
    Li, Ling-Long
    Cao, Guang-Zhong
    Zhang, Yue-Peng
    Li, Wan-Chen
    Cui, Fang
    Sensors, 2024, 24 (23)