Compressive Strength and Chloride Ion Penetration Resistance of GGBFS-Based Alkali-Activated Composites Containing Ferronickel Slag Aggregates

被引:0
|
作者
Lee, Jae-In [1 ]
Kim, Chae-Young [1 ]
Yoon, Joo-Ho [1 ]
Choi, Se-Jin [1 ]
机构
[1] Wonkwang Univ, Dept Architectural Engn, 460 Iksan Daero, Iksan 54538, South Korea
基金
新加坡国家研究基金会;
关键词
ferronickel slag aggregate; alkali-activated composites; mortar flow; compressive strength; chloride ion penetrability; GEOPOLYMER CONCRETE; FINE AGGREGATE; FLY-ASH; CEMENT;
D O I
10.3390/ma17194922
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Various studies have reported the use of alkali-activated composites to enable sustainable development in the construction industry as these composites eliminate the need for cement. However, few studies have used ferronickel slag aggregates (FSAs) as an aggregate material for alkali-activated composites. Alkali-activated composites are environmentally friendly and sustainable construction materials that can reduce carbon dioxide emissions from cement production, which accounts for 7% of global carbon emissions. In the construction industry, various research was conducted to improve the performance of alkali-activated composites, such as changing the binder, alkali activator, or aggregate. However, research on the application of ferronickel slag aggregate as an aggregate in alkali-activated composites is still insufficient. In addition, the effect of ferronickel slag aggregate on the performance of alkali-activated composites when using calcium-based or sodium-based alkali activators has not been reported yet. Thus, this study prepared ground granulated blast-furnace slag-based alkali-activated composites with 0, 10, 20, and 30% FSA as natural fine aggregate substitutes. Then, the fluidity, micro-hydration heat, compressive strength properties, and resistance to chloride ion penetration of the alkali-activated composite were evaluated. The test results showed that the maximum temperature of the CF10, CF20, and CF30 samples with FSA was 35.4-36.4 degrees C, which is 3.8-6.7% higher than that of the CF00 sample. The 7 d compressive strength of the sample prepared with CaO was higher than that of the sample prepared with Na2SiO3. Nevertheless, the 28 d compressive strength of the NF20 sample with Na2SiO3 and 20% FSA was the highest, with a value of approximately 55.0 MPa. After 7 d, the total charge passing through the sample with Na2SiO3 was approximately 1.79-2.24 times higher than that of the sample with CaO. Moreover, the total charge decreased with increasing FSA content.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Study on early dynamic compressive strength of alkali-activated slag high performance concrete
    Ma, Qinyong
    Yang, Xuan
    Shi, Yuhang
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2024, 28 (09) : 2160 - 2176
  • [32] Experiment of axial compressive strength of alkali-activated slag concrete hollow block masonry
    Zheng W.
    Jiao Z.
    Zou M.
    Wang Y.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2019, 51 (06): : 40 - 45
  • [33] Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature
    Pan, Z.
    Tao, Z.
    Cao, Y. F.
    Wuhrer, R.
    Murphy, T.
    CEMENT & CONCRETE COMPOSITES, 2018, 86 : 9 - 18
  • [35] Investigation of the relationship among the hydration, microstructure and compressive strength of alkali-activated phosphorus slag
    Jia, Ruiquan
    Wang, Qiang
    Luo, Ting
    JOURNAL OF BUILDING ENGINEERING, 2023, 76
  • [36] STRENGTH AND DRYING SHRINKAGE OF ALKALI-ACTIVATED SLAG PASTES CONTAINING REACTIVE MGO
    Jin, Fei
    Gu, Kai
    Al-Tabbaa, Abir
    ADVANCES IN CHEMICALLY-ACTIVATED MATERIALS (CAM'2014), 2014, 92 : 319 - 328
  • [37] Design of Fly Ash-Based Alkali-Activated Mortars, Containing Waste Glass and Recycled CDW Aggregates, for Compressive Strength Optimization
    Miraldo, Sergio
    Lopes, Sergio
    Lopes, Adelino V.
    Pacheco-Torgal, Fernando
    MATERIALS, 2022, 15 (03)
  • [38] Performance of polypropylene fiber reinforced GGBFS-based alkali activated composites under sulfate and freeze–thaw conditions
    Khatib Zada Farhan
    Azmi Megat Johari Megat
    Ramazan Demirboğa
    Materials and Structures, 2023, 56
  • [39] Influence of chloride salt type on chloride ion diffusion performance of alkali-activated slag mortar
    Jiang, Linhua
    Niu, Yalu
    Jin, Weizhun
    Gao, Hailang
    Chen, Lei
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 351
  • [40] Impacts of Dry Activators on One-Part Alkali-Activated GGBFS Pastes: Setting Time and Compressive Strength
    Morsy, Alaa M.
    Marzouck, Omar M.
    Shalan, Ali H.
    JOURNAL OF STRUCTURAL DESIGN AND CONSTRUCTION PRACTICE, 2025, 30 (01):