Sharper Utility Bounds for Differentially Private Models

被引:0
|
作者
Kang, Yilin
Liu, Yong
Li, Jian
Wang, Weiping
机构
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Gradient methods - Risk perception
引用
收藏
相关论文
共 50 条
  • [41] Privacy, Security, and Utility Analysis of Differentially Private CPES Data
    Hossain, Md Tamjid
    Badsha, Shahriar
    Shen, Haoting
    2021 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2021, : 65 - 73
  • [42] Utility and Disclosure Risk for Differentially Private Synthetic Categorical Data
    Raab, Gillian M.
    PRIVACY IN STATISTICAL DATABASES, PSD 2022, 2022, 13463 : 250 - 265
  • [43] Preserving Data Utility in Differentially Private Smart Home Data
    Stirapongsasuti, Sopicha
    Tiausas, Francis Jerome
    Nakamura, Yugo
    Yasumoto, Keiichi
    IEEE ACCESS, 2024, 12 : 56571 - 56581
  • [44] Improving the utility of differentially private clustering through dynamical processing
    Byun, Junyoung
    Choi, Yujin
    Lee, Jaewook
    PATTERN RECOGNITION, 2025, 157
  • [45] Differentially private and utility-aware publication of trajectory data
    Liu, Qi
    Yu, Juan
    Han, Jianmin
    Yao, Xin
    Expert Systems with Applications, 2021, 180
  • [46] Error Bounds and Guidelines for Privacy Calibration in Differentially Private Kalman Filtering
    Yazdani, Kasra
    Hale, Matthew
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 4423 - 4428
  • [47] SAMPLE COMPLEXITY BOUNDS ON DIFFERENTIALLY PRIVATE LEARNING VIA COMMUNICATION COMPLEXITY
    Feldman, Vitaly
    Xiao, David
    SIAM JOURNAL ON COMPUTING, 2015, 44 (06) : 1740 - 1764
  • [48] Sharper bounds for the hardness of prototype and feature selection
    Nock, R
    Sebban, M
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2000, 1968 : 224 - 237
  • [49] Towards Sharper Risk Bounds for Minimax Problems
    Zhu, Bowei
    Li, Shaojie
    Liu, Yong
    arXiv,
  • [50] SHARPER BOUNDS FOR PROXIMAL GRADIENT ALGORITHMS WITH ERRORS
    Hamadouche, Anis
    Wu, Yun
    Wallace, Andrew M.
    Mota, Joao F. C.
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 278 - 305