Influence of nickel coating in textile-based supercapacitor

被引:1
|
作者
Vilchis-Gutierrez, Paola G. [1 ,2 ]
Avila-Nino, Jose A. [3 ,4 ]
Duran-Garcia, Ma Dolores [1 ]
Pacheco-Pacheco, Marquidia J. [5 ]
机构
[1] UAEMex Univ Autonoma Estado Mexico, Toluca 50000, Estado De Mexic, Mexico
[2] CIDETEQ SC Ctr Invest & Desarrollo Tecnol Electro, Pedro Escobedo 76703, Queretaro, Mexico
[3] CONAHCYT CIATEQ AC Ctr Tecnol Avanzada, Zapopan 45131, Jalisco, Mexico
[4] CONAHCYT CIDETEQ SC Ctr Invest & Desarrollo Tecno, Pedro Escobedo 76703, Queretaro, Mexico
[5] ININ Inst Nacl Invest Nucl, Ocoyoacac 52750, Estado De Mexic, Mexico
关键词
Flexible supercapacitor; Cotton-based supercapacitor; Carbonaceous textile electrodes; Nickel sputtering;
D O I
10.1016/j.matlet.2024.137401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the growing demand for efficient energy storage, studies have focused on enhancing supercapacitors by utilizing natural fibers like cotton, which offer economic and environmental benefits. This study explores the incorporation of nickel into cotton textile-based electrodes impregnated with activated carbon (AC) to improve their electrochemical performance. Comparative analysis between Ni coated AC-cotton and AC-cotton supercapacitors demonstrated significant performance improvements due to Ni incorporation. The results showed that Ni-coated electrodes exhibit higher capacitance (144.7 mF center dot cm(-2)) than Ni-free electrodes (63.27 mF center dot cm(-2)), higher energy density (38.28 mu Wh center dot cm(-2) vs 9.467 mu Wh center dot cm(-2)), and superior capacitance retention (90.64 %) compared to their Ni-free counterparts (73.59 %), confirming the critical role of Ni in enhancing supercapacitor efficiency and durability.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Textile-Based Capacitive Sensors for Respiration Monitoring
    Merritt, Carey R.
    Nagle, H. Troy
    Grant, Edward
    IEEE SENSORS JOURNAL, 2009, 9 (1-2) : 71 - 78
  • [32] Textile-based Passive Sensor for Air Humidity
    He, Han
    Chen, Xiaochen
    Khan, Zahangir
    Sydanheimo, Lauri
    Ukkonen, Leena
    Li, Jiahui
    Nishikawa, Hiroshi
    Virkki, Johanna
    2020 IEEE 8TH ELECTRONICS SYSTEM-INTEGRATION TECHNOLOGY CONFERENCE (ESTC), 2020,
  • [33] Recent progress on textile-based triboelectric nanogenerators
    Paosangthong, Watcharapong
    Torah, Russel
    Beeby, Steve
    NANO ENERGY, 2019, 55 : 401 - 423
  • [34] Biomedical textile-based Biomaterials and their surgical applications
    Chu Chih-Chang
    2007 INTERNATIONAL FORUM ON BIOMEDICAL TEXTILE MATERIALS, PROCEEDINGS, 2007, : 191 - 196
  • [35] Nanopatterned Textile-Based Wearable Triboelectric Nanogenerator
    Seung, Wanchul
    Gupta, Manoj Kumar
    Lee, Keun Young
    Shin, Kyung-Sik
    Lee, Ju-Hyuck
    Kim, Tae Yun
    Kim, Sanghyun
    Lin, Jianjian
    Kim, Jung Ho
    Kim, Sang-Woo
    ACS NANO, 2015, 9 (04) : 3501 - 3509
  • [36] Stitched textile-based microfluidics for wearable devices
    Hanze, Martin
    Piper, Andrew
    Hamedi, Mahiar Max
    LAB ON A CHIP, 2024, 25 (01) : 28 - 40
  • [37] FROM WARDROBE TO WALL + TEXTILE-BASED WALLCOVERING
    MANSER, J
    DESIGN, 1982, (400): : 34 - 36
  • [38] Textile-based Hybrid Energy Storage System
    Yong, Sheng
    Hillier, Nicholas
    Beeby, Stephen
    20TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2021), 2021, : 120 - 123
  • [39] THE STATUS OF TEXTILE-BASED DRY EEG ELECTRODES
    Tseghai, Granch Berhe
    Malengier, Benny
    Fante, Kinde Anlay
    Van Langenhove, Lieva
    AUTEX RESEARCH JOURNAL, 2021, 21 (01) : 63 - 70
  • [40] Wearable Textile-Based In-Plane Microsupercapacitors
    Pu, Xiong
    Liu, Mengmeng
    Li, Linxuan
    Han, Shichao
    Li, Xiaolong
    Jiang, Chunyan
    Du, Chunhua
    Luo, Jianjun
    Hu, Weiguo
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2016, 6 (24)