Detecting Fusion Genes in Long-Read Transcriptome Sequencing Data with FUGAREC

被引:2
|
作者
Masuda K. [1 ]
Sota Y. [2 ]
Matsuda H. [1 ]
机构
[1] Graduate School of Information Science and Technology, Osaka University, Osaka, Suita
[2] Graduate School of Medicine, Osaka University, Osaka, Suita
基金
日本学术振兴会;
关键词
fusion gene; long-read sequencing; RNA sequencing;
D O I
10.2197/ipsjtbio.17.1
中图分类号
学科分类号
摘要
Fusion genes are important targets and biomarkers for cancer therapy. Methods of accurately detecting fusion genes are needed in clinical practice. RNA-seq is widely used to detect active fusion genes. Long-read RNA-seq can sequence the full length of mRNA, and long-read RNA-seq is expected to detect fusion genes that cannot be detected by short-read RNA-seq. However, long-read RNA-seq has high basecalling error rates, and gap sequences may occur near the breakpoints of long reads that are not aligned to the genome. When gap sequences occur, it is impossible to identify the correct fusion gene or breakpoint using existing methods. To address these challenges in fusion gene detection, we introduce a novel algorithm, FUGAREC (fusion detection with gap re-alignment and breakpoint clustering). FUGAREC uniquely combines gap sequence re-alignment with breakpoint clustering. This approach not only enhances the detection of previously undetectable fusion genes but also significantly reduces false positives. We demonstrate that FUGAREC has high fusion gene detection performance on both simulated data and sequenced data of a breast cancer cell line. © 2024 Information Processing Society of Japan.
引用
收藏
页码:1 / 9
页数:8
相关论文
共 50 条
  • [21] Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome
    Troskie, Robin-Lee
    Jafrani, Yohaann
    Mercer, Tim R.
    Ewing, Adam D.
    Faulkner, Geoffrey J.
    Cheetham, Seth W.
    GENOME BIOLOGY, 2021, 22 (01)
  • [22] Opportunities and challenges in long-read sequencing data analysis
    Amarasinghe, Shanika L.
    Su, Shian
    Dong, Xueyi
    Zappia, Luke
    Ritchie, Matthew E.
    Gouil, Quentin
    GENOME BIOLOGY, 2020, 21 (01)
  • [23] Detecting and phasing minor single-nucleotide variants from long-read sequencing data
    Zhixing Feng
    Jose C. Clemente
    Brandon Wong
    Eric E. Schadt
    Nature Communications, 12
  • [24] Detecting and phasing minor single-nucleotide variants from long-read sequencing data
    Feng, Zhixing
    Clemente, Jose C.
    Wong, Brandon
    Schadt, Eric E.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [25] Reference-free assembly of long-read transcriptome sequencing data with RNA-Bloom2
    Nip, Ka Ming
    Hafezqorani, Saber
    Gagalova, Kristina K.
    Chiu, Readman
    Yang, Chen
    Warren, Rene L.
    Birol, Inanc
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [26] Reference-free assembly of long-read transcriptome sequencing data with RNA-Bloom2
    Ka Ming Nip
    Saber Hafezqorani
    Kristina K. Gagalova
    Readman Chiu
    Chen Yang
    René L. Warren
    Inanc Birol
    Nature Communications, 14 (1)
  • [27] Genome sequencing using long-read sequencing
    McEwen, Juan Guillermo
    Gomez, Oscar Mauricio
    REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS FISICAS Y NATURALES, 2023, 47 (183): : 439 - 444
  • [28] Long-read sequencing uncovers a complex transcriptome topology in varicella zoster virus
    Prazsak, Istvan
    Moldovan, Norbert
    Balazs, Zsolt
    Tombacz, Dora
    Megyeri, Klara
    Szucs, Attila
    Csabai, Zsolt
    Boldogkoi, Zsolt
    BMC GENOMICS, 2018, 19
  • [29] Single-molecule long-read sequencing facilitates shrimp transcriptome research
    Digang Zeng
    Xiuli Chen
    Jinxia Peng
    Chunling Yang
    Min Peng
    Weilin Zhu
    Daxiang Xie
    Pingping He
    Pinyuan Wei
    Yong Lin
    Yongzhen Zhao
    Xiaohan Chen
    Scientific Reports, 8
  • [30] Long-Read Sequencing Annotation of the Transcriptome in DNA-PK Inactivated Cells
    Song, Liwei
    Yu, Mengjun
    Jin, Renjing
    Gu, Meng
    Wang, Ziyu
    Hou, Dailun
    Xu, Shaofa
    Wang, Jinghui
    Ma, Teng
    FRONTIERS IN ONCOLOGY, 2022, 12