SAMFL: Secure Aggregation Mechanism for Federated Learning with Byzantine-robustness by functional encryption

被引:0
|
作者
Guan, Menghong [1 ]
Bao, Haiyong [1 ]
Li, Zhiqiang [1 ]
Pan, Hao [1 ]
Huang, Cheng [2 ]
Dai, Hong-Ning [3 ]
机构
[1] East China Normal Univ, Software Engn Inst, Shanghai 200062, Peoples R China
[2] Fudan Univ, Sch Comp Sci, Shanghai 200438, Peoples R China
[3] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Peoples R China
基金
上海市自然科学基金;
关键词
Federated learning; Privacy-preservation; Byzantine-robustness; Functional encryption; TRUTH DISCOVERY; ATTACKS;
D O I
10.1016/j.sysarc.2024.103304
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) enables collaborative model training without sharing private data, thereby potentially meeting the growing demand for data privacy protection. Despite its potentials, FL also poses challenges in achieving privacy-preservation and Byzantine-robustness when handling sensitive data. To address these challenges, we present a novel S ecure A ggregation M echanism for F ederated L earning with Byzantine- Robustness by Functional Encryption (SAMFL). Our approach designs a novel dual-decryption multi-input functional encryption (DD-MIFE) scheme, which enables efficient computation of cosine similarities and aggregation of encrypted gradients through a single ciphertext. This innovative scheme allows for dual decryption, producing distinct results based on different keys, while maintaining high efficiency. We further propose TF-Init, integrating DD-MIFE with Truth Discovery (TD) to eliminate the reliance on a root dataset. Additionally, we devise a secure cosine similarity calculation aggregation protocol (SC2AP) using DD-MIFE, ensuring privacy-preserving and Byzantine-robust FL secure aggregation. To enhance FL efficiency, we employ single instruction multiple data (SIMD) to parallelize encryption and decryption processes. Concurrently, to preserve accuracy, we incorporate differential privacy (DP) with selective clipping of model layers within the FL framework. Finally, we integrate TF-Init, SC2AP, SIMD, and DP to construct SAMFL. Extensive experiments demonstrate that SAMFL successfully defends against both inference attacks and poisoning attacks, while improving efficiency and accuracy compared to existing methods. SAMFL provides a comprehensive integrated solution for FL with efficiency, accuracy, privacy-preservation, and robustness.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Byzantine-Robust Aggregation in Federated Learning Empowered Industrial IoT
    Li, Shenghui
    Ngai, Edith
    Voigt, Thiemo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1165 - 1175
  • [42] Robust Federated Learning: Maximum Correntropy Aggregation Against Byzantine Attacks
    Luan, Zhirong
    Li, Wenrui
    Liu, Meiqin
    Chen, Badong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 62 - 75
  • [43] An Experimental Study of Byzantine-Robust Aggregation Schemes in Federated Learning
    Li, Shenghui
    Ngai, Edith
    Voigt, Thiemo
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 975 - 988
  • [44] Byzantine-robust Federated Learning via Cosine Similarity Aggregation
    Zhu, Tengteng
    Guo, Zehua
    Yao, Chao
    Tan, Jiaxin
    Dou, Songshi
    Wang, Wenrun
    Han, Zhenzhen
    COMPUTER NETWORKS, 2024, 254
  • [45] Robust Federated Learning: Maximum Correntropy Aggregation Against Byzantine Attacks
    Luan, Zhirong
    Li, Wenrui
    Liu, Meiqin
    Chen, Badong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 62 - 75
  • [46] Federated Learning with Autotuned Communication-Efficient Secure Aggregation
    Bonawitz, Keith
    Salehi, Fariborz
    Konecny, Jakub
    McMahan, Brendan
    Gruteser, Marco
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1222 - 1226
  • [47] Fast Secure Aggregation for Privacy-Preserving Federated Learning
    Liu, Yanjun
    Qian, Xinyuan
    Li, Hongwei
    Hao, Meng
    Guo, Song
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3017 - 3022
  • [48] Byzantine-robust federated learning with ensemble incentive mechanism
    Zhao, Shihai
    Pu, Juncheng
    Fu, Xiaodong
    Liu, Li
    Dai, Fei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 159 : 272 - 283
  • [49] RVFL: Rational Verifiable Federated Learning Secure Aggregation Protocol
    Mu, Xianyu
    Tian, Youliang
    Zhou, Zhou
    Wang, Shuai
    Xiong, Jinbo
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (14): : 25147 - 25161
  • [50] Towards Efficient Secure Aggregation for Model Update in Federated Learning
    Wu, Danye
    Pan, Miao
    Xu, Zhiwei
    Zhang, Yujun
    Han, Zhu
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,