Human Activity Recognition Based on Point Clouds from Millimeter-Wave Radar

被引:0
|
作者
Lim, Seungchan [1 ]
Park, Chaewoon [1 ]
Lee, Seongjoo [2 ,3 ]
Jung, Yunho [1 ,4 ]
机构
[1] Korea Aerosp Univ, Sch Elect & Informat Engn, Goyang 10540, South Korea
[2] Sejong Univ, Dept Elect Engn, Seoul 05006, South Korea
[3] Sejong Univ, Dept Convergence Engn Intelligent Drone, Seoul 05006, South Korea
[4] Korea Aerosp Univ, Dept Smart Air Mobil, Goyang 10540, South Korea
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 22期
关键词
millimeter-wave radar; 3D point cloud; human activity recognition; field-programmable gate array;
D O I
10.3390/app142210764
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Human activity recognition (HAR) technology is related to human safety and convenience, making it crucial for it to infer human activity accurately. Furthermore, it must consume low power at all times when detecting human activity and be inexpensive to operate. For this purpose, a low-power and lightweight design of the HAR system is essential. In this paper, we propose a low-power and lightweight HAR system using point-cloud data collected by radar. The proposed HAR system uses a pillar feature encoder that converts 3D point-cloud data into a 2D image and a classification network based on depth-wise separable convolution for lightweighting. The proposed classification network achieved an accuracy of 95.54%, with 25.77 M multiply-accumulate operations and 22.28 K network parameters implemented in a 32 bit floating-point format. This network achieved 94.79% accuracy with 4 bit quantization, which reduced memory usage to 12.5% compared to existing 32 bit format networks. In addition, we implemented a lightweight HAR system optimized for low-power design on a heterogeneous computing platform, a Zynq UltraScale+ ZCU104 device, through hardware-software implementation. It took 2.43 ms of execution time to perform one frame of HAR on the device and the system consumed 3.479 W of power when running.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Target recognition and tracking of group vehicles based on roadside millimeter-wave radar
    Li, Li
    Wu, Xiao-Qiang
    Yang, Wen-Chen
    Zhou, Rui-Jie
    Wang, Gui-Ping
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (07): : 2104 - 2114
  • [32] A Systematic Study on Object Recognition Using Millimeter-wave Radar
    Devnath, Maloy Kumar
    Chakma, Avijoy
    Anwar, Mohammad Saeid
    Dey, Emon
    Hasan, Zahid
    Conn, Marc
    Pal, Biplab
    Roy, Nirmalya
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP, 2023, : 57 - 64
  • [33] Deep Learning Approach for Gesture Recognition on Millimeter-Wave Radar
    Liu, Jiang
    Liu, Yuming
    Wang, Yunxuan
    Chen, Yating
    Zhou, Tianxiang
    Huang, Yan
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [34] Millimeter-Wave Radar Cane: A Blind People Aid With Moving Human Recognition Capabilities
    Cardillo, Emanuele
    Li, Changzhi
    Caddemi, Alina
    IEEE JOURNAL OF ELECTROMAGNETICS RF AND MICROWAVES IN MEDICINE AND BIOLOGY, 2022, 6 (02): : 204 - 211
  • [35] Time-Space Dimension Reduction of Millimeter-Wave Radar Point-Clouds for Smart-Home Hand-Gesture Recognition
    Xia, Zhaoyang
    Xu, Feng
    IEEE SENSORS JOURNAL, 2022, 22 (05) : 4425 - 4437
  • [36] MILLIMETER-WAVE RADAR TECHNOLOGY
    HEIDEN, DZ
    ELECTRICAL COMMUNICATION, 1982, 57 (01): : 70 - 78
  • [37] Automotive millimeter-wave radar
    System and Electronics Engineering Dept., II, Toyota Central R and D Labs., Inc., Nagakute-shi, Japan
    J. Inst. Electron. Inf. Commun. Eng., 10 (872-875): : 872 - 875
  • [38] Fine-Grained Spatial-Temporal Gait Recognition Network Based on Millimeter-Wave Radar Point Cloud
    Xue, Shikun
    Du, Lan
    Shi, Yu
    Chen, Xiaoyang
    Xie, Meng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [39] Point transformer-based human activity recognition using high-dimensional radar point clouds
    Guo, Zhongyuan
    Guendel, Ronny G.
    Yarovoy, Alexander
    Fioranelli, Francesco
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,
  • [40] Acceleration of FPGA Based Convolutional Neural Network for Human Activity Classification Using Millimeter-Wave Radar
    Lei, Peng
    Liang, Jiawei
    Guan, Zhenyu
    Wang, Jun
    Zheng, Tong
    IEEE ACCESS, 2019, 7 : 88917 - 88926