Machine learning-based bridge cable damage detection under stochastic effects of corrosion and fire

被引:0
|
作者
Feng, Jinpeng [1 ]
Gao, Kang [1 ,2 ]
Gao, Wei [3 ]
Liao, Yuchen [1 ]
Wu, Gang [1 ,2 ]
机构
[1] School of Civil Engineering, Southeast University, Nanjing, China
[2] National and Local Joint Engineering Research Center for Intelligent Construction and Maintenance, Southeast University, Nanjing, China
[3] School of Civil and Environmental Engineering, The University of New South Wales, Sydney,NSW,2052, Australia
关键词
Backpropagation - Corrosive effects - Damage detection - Deterioration - Forecasting - Least squares approximations - Radial basis function networks - Steel corrosion - Stochastic models - Stochastic systems - Support vector machines;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a novel machine learning-based cable damage detection model to investigate the upper and lower bounds of bridges’ cable damage degrees under the effects of corrosion and fire. In the proposed approach, the surrogate model for bridge cable damage detection under stochastic effects of corrosion and fire was established by combining machine learning and finite-element analysis to estimate the remaining life of cables. Then the accuracy and generalization performance of three typical machine learning methods for cable damage prediction are compared, such as Back Propagation neural network(BPNN), Radial Basis Function neural network(RBFNN) and Least Square-Support Vector Machine (LS-SVM). It is conducted that LS-SVM owns better prediction accuracy for cable damage under the coupling effects of corrosion and fire than the others. Additionally, the LS-SVM surrogate model combined with stochastic analysis and time-dependent deterioration model of steel wires under corrosion and fire is used to obtain the upper and lower bounds of cable damage under coupling effect of corrosion and fire. The proposed surrogate model can assist management in diagnosing and evaluating cable damage more quickly, efficiently, and flexibly once the real-time monitoring data is obtained. In addition, the surrogate model can guide bridge maintenance in advance. © 2022
引用
收藏
相关论文
共 50 条
  • [41] Machine Learning-Based Detection of Ransomware Using SDN
    Cusack, Greg
    Michel, Oliver
    Keller, Eric
    PROCEEDINGS OF THE 2018 ACM INTERNATIONAL WORKSHOP ON SECURITY IN SOFTWARE DEFINED NETWORKS & NETWORK FUNCTION VIRTUALIZATION (SDN-NFVSEC'18), 2018, : 1 - 6
  • [42] Supervised Machine Learning-Based Detection of Concrete Efflorescence
    Fan, Ching-Lung
    Chung, Yu-Jen
    SYMMETRY-BASEL, 2022, 14 (11):
  • [43] Machine Learning-based Anomaly Detection for Particle Accelerators
    Marcato, Davide
    Arena, Giovanni
    Bortolato, Damiano
    Gelain, Fabio
    Martinelli, Valentina
    Munaron, Enrico
    Roetta, Marco
    Savarese, Giovanni
    Susto, Gian Antonio
    5TH IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2021), 2021, : 240 - 246
  • [44] Machine Learning-Based Malicious Application Detection of Android
    Wei, Linfeng
    Luo, Weiqi
    Weng, Jian
    Zhong, Yanjun
    zhang, Xiaoqian
    Yan, Zheng
    IEEE ACCESS, 2017, 5 : 25591 - 25601
  • [45] Phishing Attacks Detection A Machine Learning-Based Approach
    Salahdine, Fatima
    El Mrabet, Zakaria
    Kaabouch, Naima
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 250 - 255
  • [46] Machine learning-based algorithmically generated domain detection?
    Wang, Zheng
    Guo, Yang
    Montgomery, Doug
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [47] A novel procedure for cable damage identification of cable-stayed bridge using particle swarm optimization and machine learning
    Pham, Van-Thanh
    Thai, Duc-Kien
    Kim, Seung-Eock
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024,
  • [48] Machine Learning-based Seismic Fragility Curves for RC Bridge Piers
    Wang, Xuguang
    Demartino, Cristoforo
    Monti, Giorgio
    Quaranta, Giuseppe
    Fiore, Alessandra
    XIX ANIDIS CONFERENCE, SEISMIC ENGINEERING IN ITALY, 2023, 44 : 1736 - 1743
  • [49] Machine learning-based system for fault detection on anchor rods of cable-stayed power transmission towers
    Coutinho, M. S.
    Novo, L. R. G. S. Lourenco
    de Melo, M. T.
    de Medeiros, L. H. A.
    Barbosa, D. C. P.
    Alves, M. M.
    Tarrago, V. L.
    dos Santos, R. G. M.
    Neto, H. B. T. D. Lott
    Gama, P. H. R. P.
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 194
  • [50] A machine learning-based workflow for automatic detection of anomalies in machine tools
    Zuefle, Marwin
    Moog, Felix
    Lesch, Veronika
    Krupitzer, Christian
    Kounev, Samuel
    ISA TRANSACTIONS, 2022, 125 : 445 - 458