Thermal Bed Design for Temperature-Controlled DNA Amplification Using Optoelectronic Sensors

被引:0
|
作者
Garcia-Torales, Guillermo [1 ]
Torres-Ortega, Hector Hugo [1 ]
Estrada-Marmolejo, Ruben [1 ]
Beltran-Gonzalez, Anuar B. [1 ]
Strojnik, Marija [2 ]
机构
[1] Univ Guadalajara, Univ Ctr Exact Sci & Engn, Dept Elect, Ave Revoluc 1500, Guadalajara 44840, Jalisco, Mexico
[2] Opt Res Ctr, Guanajuato 37150, Mexico
关键词
LAMP; DNA amplification; microfluidics; thermal control; optoelectronic sensors; BIOSENSORS; CHIP; MICROFLUIDICS;
D O I
10.3390/s24217050
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Loop-Mediated Isothermal Loop-Mediated Isothermal Amplification (LAMP) is a widely used technique for nucleic acid amplification due to its high specificity, sensitivity, and rapid results. Advances in microfluidic lab-on-chip (LOC) technology have enabled the integration of LAMP into miniaturized devices, known as mu-LAMP, which require precise thermal control for optimal DNA amplification. This paper introduces a novel thermal bed design using PCB copper traces and FR-4 dielectric materials, providing a reliable, modular, and repairable heating platform. The system achieves accurate and stable temperature control, which is critical for mu-LAMP applications, with temperature deviations within +/- 1.0 degrees C. The thermal bed's performance is validated through finite element method (FEM) simulations, showing uniform temperature distribution and a rapid thermal response of 2.5 s to reach the target temperature. These results highlight the system's potential for applications such as disease diagnostics, biological safety, and forensic analysis, where precision and reliability are paramount.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Smart temperature-controlled infant car seat using thermoelectric devices
    Senthilkumar, Roshni
    Al Musleh, Mohamed
    2020 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS 2020), 2020, : 151 - 157
  • [42] Characterization of Liquid Crystals Using a Temperature-Controlled 60 GHz Resonator
    Polat, E.
    Reese, R.
    Tesmer, H.
    Schmidt, S.
    Spaeth, M.
    Nickel, M.
    Schuster, C.
    Jakoby, R.
    Maune, H.
    2019 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP 2019), 2019, : 19 - 21
  • [43] Outcomes of Heart Transplantation Using a Temperature-controlled Hypothermic Storage System
    Zhu, Yuanjia
    Shudo, Yasuhiro
    He, Hao
    Kim, Joo Young
    Elde, Stefan
    Williams, Kiah M.
    Walsh, Sabrina K.
    Koyano, Tiffany K.
    Guenthart, Brandon
    Woo, Y. Joseph
    TRANSPLANTATION, 2023, 107 (05) : 1151 - 1157
  • [44] Temperature-controlled SSCP analysis using a vertical slab gel unit
    Benko, F. A.
    Gocke, C.
    Patel, A.
    American Biotechnology Laboratory, 1996, 14 (03):
  • [45] Programmable UWB Waveform Generation using FBGs with Temperature-Controlled Apodization
    Abtahi, Mohammad
    Dastmalchi, Mansour
    LaRochelle, Sophie
    Rusch, Leslie A.
    OFC: 2009 CONFERENCE ON OPTICAL FIBER COMMUNICATION, VOLS 1-5, 2009, : 2252 - 2254
  • [46] Genitourinary syndrome of menopause treatment using lasers and temperature-controlled radiofrequency
    Wanczyk-Baszak, Jadwiga
    Wozniak, Slawomir
    Milejski, Bartosz
    Paszkowski, Tomasz
    MENOPAUSE REVIEW-PRZEGLAD MENOPAUZALNY, 2018, 17 (04): : 185 - 189
  • [47] Thermal Performance and Optimizing of Composite Trombe Wall with Temperature-Controlled DC Fan in Winter
    Zhu, Yuewei
    Zhang, Tao
    Ma, Qingsong
    Fukuda, Hiroatsu
    SUSTAINABILITY, 2022, 14 (05)
  • [48] In-Bed Person Monitoring Using Thermal Infrared Sensors
    Josse, Elias
    Nerborg, Amanda
    Hernandez-Diaz, Kevin
    Alonso-Fernandez, Fernando
    PROCEEDINGS OF THE 2021 16TH CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENCE SYSTEMS (FEDCSIS), 2021, : 121 - 125
  • [49] Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders
    Pan, ZW
    Dai, ZR
    Xu, L
    Lee, ST
    Wang, ZL
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (13): : 2507 - 2514
  • [50] Thermal expansion of microstructured DMPC bilayers quantified by temperature-controlled atomic force microscopy
    Schuy, Steffen
    Janshoff, Andreas
    CHEMPHYSCHEM, 2006, 7 (06) : 1207 - 1210