Elucidating the increased ohmic resistances in zero-gap alkaline water electrolysis

被引:6
|
作者
Barros, Rodrigo Lira Garcia [1 ]
Kelleners, Mathy H. G. [1 ]
van Bemmel, Lucas [1 ]
van der Leegte, Thijmen V. N. [1 ]
van der Schaaf, John [1 ,2 ]
de Groot, Matheus T. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Sustainable Proc Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Eindhoven Inst Renewable Energy Syst, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Electrolysis; Ohmic resistance; Zero-gap; 4-terminal configuration; Contact resistance; HYDROGEN; ZIRFON(R); CELL;
D O I
10.1016/j.electacta.2024.145161
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study investigates the increased ohmic resistances observed in zero-gap alkaline water electrolyzers, aiming to provide insights that can help enhance electrolyzer efficiency and enable operation at higher current densities. Electrochemical impedance spectroscopy (EIS) has been employed in combination with chronopotentiometry, utilizing a custom-designed flow cell with nickel perforated electrodes and a Zirfon UTP 500 diaphragm. Observed differences in area-ohmic resistance values obtained through I-V fitting and EIS, are ascribed to a nonlinear Tafel slope at higher current densities. Ohmic resistance values measured with EIS are up to 27% higher than the ex-situ determined value, a significantly smaller percentage than expected based on previous studies. The presence of bubbles outside and inside the diaphragm is identified as the key factor contributing to this increased resistance. We recommend the use of an improved fitting approach, accounting for non-linear Tafel behavior, and the use of a 4-terminal configuration when performing EIS measurements to minimize cable and contact resistance.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Direct Water Injection in Catholyte-Free Zero-Gap Carbon Dioxide Electrolyzers
    De Mot, Bert
    Ramdin, Mahinder
    Hereijgers, Jonas
    Vlugt, Thijs J. H.
    Breugelmans, Tom
    CHEMELECTROCHEM, 2020, 7 (18): : 3839 - 3843
  • [42] Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas
    Phillips, Robert
    Dunnill, Charles W.
    RSC ADVANCES, 2016, 6 (102): : 100643 - 100651
  • [43] Mass transfer limitation phenomena across the separator in a zero-gap alkaline water electrolysis stack: Anion-selective polymer electrolyte membrane vs. ZirfonTM Perl UTP 500 case study
    Denk, Karel
    Kodym, Roman
    Hnat, Jaromir
    Paidar, Martin
    Turek, Thomas
    Bouzek, Karel
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [44] Optimizing the use of a gas diffusion electrode setup for CO2 electrolysis imitating a zero-gap MEA design
    Alinejad, Shima
    Quinson, Jonathan
    Li, Yao
    Kong, Ying
    Reichenberger, Sven
    Barcikowski, Stephan
    Broekmann, Peter
    Arenz, Matthias
    JOURNAL OF CATALYSIS, 2024, 429
  • [45] Prospects for alkaline zero gap water electrolysers for hydrogen production
    Pletcher, Derek
    Li, Xiaohong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (23) : 15089 - 15104
  • [46] Cation Crossover Limits Accessible Current Densities for Zero-Gap Alkaline CO2 Reduction to Ethylene
    Simonson, Hunter
    Henckel, Danielle
    Klein, W. Ellis
    Neyerlin, K. C.
    Smith, Wilson A.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2025, 13 (02): : 823 - 833
  • [47] Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers
    Joensen, Bjort Oladottir
    Zeledon, Jose A. Zamora
    Trotochaud, Lena
    Sartori, Andrea
    Mirolo, Marta
    Moss, Asger Barkholt
    Garg, Sahil
    Chorkendorff, Ib
    Drnec, Jakub
    Seger, Brian
    Xu, Qiucheng
    JOULE, 2024, 8 (06) : 1754 - 1771
  • [48] Microenvironment Regulation Strategies Facilitating High-Efficiency CO2 Electrolysis in a Zero-Gap Bipolar Membrane Electrolyzer
    Yue, Pengtao
    Fu, Qian
    Li, Jun
    Zhang, Liang
    Ye, Dingding
    Zhu, Xun
    Liao, Qiang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (46) : 53429 - 53435
  • [49] Carbon black supported Ag nanoparticles in zero-gap CO2 electrolysis to CO enabling high mass activity
    Seteiz, Khaled
    Haeberlein, Josephine N.
    Heizmann, Philipp A.
    Disch, Joey
    Vierrath, Severin
    RSC ADVANCES, 2023, 13 (27) : 18916 - 18926
  • [50] Efficient and durable porous Membrane-Based CO2 electrolysis for commercial Zero-Gap electrolyzer stack systems
    Ha, Min Gwan
    Lim, Chulwan
    Oh, Cheoulwoo
    Kim, Hyunchul
    Choi, Jae-Young
    Lee, Woong Hee
    Oh, Hyung-Suk
    CHEMICAL ENGINEERING JOURNAL, 2024, 496