Elucidating the increased ohmic resistances in zero-gap alkaline water electrolysis

被引:6
|
作者
Barros, Rodrigo Lira Garcia [1 ]
Kelleners, Mathy H. G. [1 ]
van Bemmel, Lucas [1 ]
van der Leegte, Thijmen V. N. [1 ]
van der Schaaf, John [1 ,2 ]
de Groot, Matheus T. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Sustainable Proc Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Eindhoven Inst Renewable Energy Syst, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Electrolysis; Ohmic resistance; Zero-gap; 4-terminal configuration; Contact resistance; HYDROGEN; ZIRFON(R); CELL;
D O I
10.1016/j.electacta.2024.145161
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study investigates the increased ohmic resistances observed in zero-gap alkaline water electrolyzers, aiming to provide insights that can help enhance electrolyzer efficiency and enable operation at higher current densities. Electrochemical impedance spectroscopy (EIS) has been employed in combination with chronopotentiometry, utilizing a custom-designed flow cell with nickel perforated electrodes and a Zirfon UTP 500 diaphragm. Observed differences in area-ohmic resistance values obtained through I-V fitting and EIS, are ascribed to a nonlinear Tafel slope at higher current densities. Ohmic resistance values measured with EIS are up to 27% higher than the ex-situ determined value, a significantly smaller percentage than expected based on previous studies. The presence of bubbles outside and inside the diaphragm is identified as the key factor contributing to this increased resistance. We recommend the use of an improved fitting approach, accounting for non-linear Tafel behavior, and the use of a 4-terminal configuration when performing EIS measurements to minimize cable and contact resistance.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Voltage losses in zero-gap alkaline water electrolysis
    Haverkort, J. W.
    Rajaei, H.
    JOURNAL OF POWER SOURCES, 2021, 497
  • [2] Ni–Fe Cathode Catalyst in Zero-Gap Alkaline Water Electrolysis
    Jana Záchenská
    Vladimír Jorík
    Ľubomír Vančo
    Matej Mičušík
    Matilda Zemanová
    Electrocatalysis, 2022, 13 : 447 - 456
  • [3] Ni-Fe Cathode Catalyst in Zero-Gap Alkaline Water Electrolysis
    Zachenska, Jana
    Jorik, Vladimir
    Vanco, L'ubomir
    Micusik, Matej
    Zemanova, Matilda
    ELECTROCATALYSIS, 2022, 13 (04) : 447 - 456
  • [4] Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm
    de Groot, Matheus T.
    Vreman, Albertus W.
    ELECTROCHIMICA ACTA, 2021, 369 (369)
  • [5] Modeling of gas evolution processes in porous electrodes of zero-gap alkaline water electrolysis cells
    Lee, Jaeseung
    Alam, Afroz
    Park, Chungi
    Yoon, Soobin
    Ju, Hyunchul
    FUEL, 2022, 315
  • [6] Modeling of gas evolution processes in porous electrodes of zero-gap alkaline water electrolysis cells
    Lee, Jaeseung
    Alam, Afroz
    Park, Chungi
    Yoon, Soobin
    Ju, Hyunchul
    Fuel, 2022, 315
  • [7] Design of a Zero-Gap Laboratory-Scale Polymer Electrolyte Membrane Alkaline Water Electrolysis Stack
    Hnat, Jaromir
    Kodym, Roman
    Denk, Karel
    Paidar, Martin
    Zitka, Jan
    Bouzek, Karel
    CHEMIE INGENIEUR TECHNIK, 2019, 91 (06) : 821 - 832
  • [8] A zero-gap silicon membrane with defined pore size and porosity for alkaline electrolysis
    Raman, Akash
    Van der Werf, Sjoerd
    Eyoevge, Cavit
    Rodriguez Olguin, Miguel Angel
    Schlautmann, Stefan
    Fernandez Rivas, David
    Mei, Bastian
    Gardeniers, Han
    Susarrey-Arce, Arturo
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (15): : 3296 - 3303
  • [9] Nickel-based nanocoatings on 3D Ni foam for zero-gap alkaline water electrolysis
    Jana Záchenská
    Maroš Ábel
    Matej Mičušík
    Vladimír Jorík
    Matilda Zemanová
    Journal of Applied Electrochemistry, 2020, 50 : 959 - 971
  • [10] Nickel-based nanocoatings on 3D Ni foam for zero-gap alkaline water electrolysis
    Zachenska, Jana
    Abel, Maros
    Micusik, Matej
    Jorik, Vladimir
    Zemanova, Matilda
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2020, 50 (09) : 959 - 971