Robust finite-temperature many-body scarring on a quantum computer

被引:0
|
作者
Desaules, Jean-Yves [1 ]
Gustafson, Erik J. [2 ,3 ]
Li, Andy C. Y. [4 ]
Papic, Zlatko [1 ]
Halimeh, Jad C. [5 ,6 ,7 ]
机构
[1] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, England
[2] NASA, Quantum Artificial Intelligence Lab QuAIL, Ames Res Ctr, Moffett Field, CA 94035 USA
[3] USRA Res Inst Adv Comp Sci RIACS, Mountain View, CA 94043 USA
[4] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[5] Ludwig Maximilians Univ Munchen, Dept Phys, Theresienstr 37, D-80333 Munich, Germany
[6] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
[7] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
关键词
Quantum computers;
D O I
10.1103/PhysRevA.110.042606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Mechanisms for suppressing thermalization in disorder-free many-body systems, such as Hilbert space fragmentation and quantum many-body scars, have recently attracted much interest in foundations of quantum statistical physics and potential quantum information processing applications. However, their sensitivity to realistic effects such as finite temperature remains largely unexplored. Here, we have utilized IBM's Kolkata quantum processor to demonstrate an unexpected robustness of quantum many-body scars at finite temperatures when the system is prepared in a thermal Gibbs ensemble. We identify such robustness in the PXP model, which describes quantum many-body scars in experimental systems of Rydberg atom arrays and ultracold atoms in tilted Bose-Hubbard optical lattices. By contrast, other theoretical models which host exact quantum many-body scars are found to lack such robustness and their scarring properties quickly decay with temperature. Our study sheds light on the important differences between scarred models in terms of their algebraic structures, which impacts their resilience to finite temperature.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Analyzing Many-Body Localization with a Quantum Computer
    Bauer, Bela
    Nayak, Chetan
    PHYSICAL REVIEW X, 2014, 4 (04):
  • [22] Variational Approach to Many-Body Problems Incorporating Many-Body Effects at Finite Temperature
    Kirikoshi, Akimitsu
    Kohno, Wataru
    Kita, Takafumi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (06)
  • [23] Observation of many-body scarring in a Bose-Hubbard quantum simulator
    Su, Guo-Xian
    Sun, Hui
    Hudomal, Ana
    Desaules, Jean-Yves
    Zhou, Zhao-Yu
    Yang, Bing
    Halimeh, Jad C.
    Yuan, Zhen-Sheng
    Papie, Zlatko
    Pan, Jian-Wei
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [24] Possible Many-Body Localization in a Long-Lived Finite-Temperature Ultracold Quasineutral Molecular Plasma
    Sous, John
    Grant, Edward
    PHYSICAL REVIEW LETTERS, 2018, 120 (11)
  • [25] Finite-temperature ab initio many-body perturbation and coupled-cluster calculations of condensed matter
    Hirata, So
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [26] Probing many-body localization on a noisy quantum computer
    Zhu, D.
    Johri, S.
    Nguyen, N. H.
    Alderete, C. Huerta
    Landsman, K. A.
    Linke, N. M.
    Monroe, C.
    Matsuura, A. Y.
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [27] Many-body hierarchy of dissipative timescales in a quantum computer
    Sommer, Oscar Emil
    Piazza, Francesco
    Luitz, David J.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [28] Quantum phase transitions in finite many-body systems
    Caprio, Mark A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [29] Variational preparation of finite-temperature states on a quantum computer
    R. Sagastizabal
    S. P. Premaratne
    B. A. Klaver
    M. A. Rol
    V. Negîrneac
    M. S. Moreira
    X. Zou
    S. Johri
    N. Muthusubramanian
    M. Beekman
    C. Zachariadis
    V. P. Ostroukh
    N. Haider
    A. Bruno
    A. Y. Matsuura
    L. DiCarlo
    npj Quantum Information, 7
  • [30] Variational preparation of finite-temperature states on a quantum computer
    Sagastizabal, R.
    Premaratne, S. P.
    Klaver, B. A.
    Rol, M. A.
    Negirneac, V
    Moreira, M. S.
    Zou, X.
    Johri, S.
    Muthusubramanian, N.
    Beekman, M.
    Zachariadis, C.
    Ostroukh, V. P.
    Haider, N.
    Bruno, A.
    Matsuura, A. Y.
    DiCarlo, L.
    NPJ QUANTUM INFORMATION, 2021, 7 (01)