An Enhanced Deep Reinforcement Learning-Based Global Router for VLSI Design

被引:0
|
作者
Xu S. [1 ]
Yang L. [2 ,3 ]
Liu G. [2 ,3 ]
机构
[1] Department of Information Engineering, Fujian Business University, Fuzhou
[2] College of Computer and Data Science, Fuzhou University, Fuzhou
[3] Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou
关键词
Deep learning - Heuristic algorithms - Heuristic methods - Integrated circuit design - Learning algorithms - Optimization - Statistics - VLSI circuits - Wire;
D O I
10.1155/2023/6593938
中图分类号
学科分类号
摘要
Global routing is a crucial step in the design of Very Large-Scale Integration (VLSI) circuits. However, most of the existing methods are heuristic algorithms, which cannot conjointly optimize the subproblems of global routing, resulting in congestion and overflow. In response to this challenge, an enhanced Deep Reinforcement Learning- (DRL-) based global router has been proposed, which comprises the following effective strategies. First, to avoid the overestimation problem generated by Q-learning, the proposed global router adopts the Double Deep Q-Network (DDQN) model. The DDQN-based global router has better performance in wire length optimization and convergence. Second, to avoid the agent from learning redundant information, an action elimination method is added to the action selection part, which significantly enhances the convergence performance of the training process. Third, to avoid the unfair allocation problem of routing resources in serial training, concurrent training is proposed to enhance the routability. Fourth, to reduce wire length and disperse routing resources, a new reward function is proposed to guide the agent to learn better routing solutions regarding wire length and congestion standard deviation. Experimental results demonstrate that the proposed algorithm outperforms others in several important performance metrics, including wire length, convergence performance, routability, and congestion standard deviation. In conclusion, the proposed enhanced DRL-based global router is a promising approach for solving the global routing problem in VLSI design, which can achieve superior performance compared to the heuristic method and DRL-based global router. © 2023 Saijuan Xu et al.
引用
收藏
相关论文
共 50 条
  • [11] Deep reinforcement learning-based antilock braking algorithm
    Mantripragada, V. Krishna Teja
    Kumar, R. Krishna
    VEHICLE SYSTEM DYNAMICS, 2023, 61 (05) : 1410 - 1431
  • [12] Deep Reinforcement Learning-Based Defense Strategy Selection
    Charpentier, Axel
    Boulahia-Cuppens, Nora
    Cuppens, Frederic
    Yaich, Reda
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY, ARES 2022, 2022,
  • [13] Computing on Wheels: A Deep Reinforcement Learning-Based Approach
    Kazmi, S. M. Ahsan
    Tai Manh Ho
    Tuong Tri Nguyen
    Fahim, Muhammad
    Khan, Adil
    Piran, Md Jalil
    Baye, Gaspard
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 22535 - 22548
  • [14] Reinforcement learning-based hybrid differential evolution for global optimization of interplanetary trajectory design
    Peng, Lei
    Yuan, Zhuoming
    Dai, Guangming
    Wang, Maocai
    Tang, Zhe
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 81
  • [15] Deep Reinforcement Learning-Based Distributed 3D UAV Trajectory Design
    He, Huasen
    Yuan, Wenke
    Chen, Shuangwu
    Jiang, Xiaofeng
    Yang, Feng
    Yang, Jian
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (06) : 3736 - 3751
  • [16] Deep Reinforcement Learning-Based Intelligent Reflecting Surface for Cooperative Jamming Model Design
    Lu, Shaofang
    Shen, Xianhao
    Zhang, Panfeng
    Wu, Zhen
    Chen, Yi
    Wang, Li
    Xie, Xiaolan
    IEEE ACCESS, 2023, 11 : 98764 - 98775
  • [17] Deep Reinforcement Learning-based Beamforming Design in ISAC-assisted Vehicular Networks
    Liu, Yiyang
    Zhang, Siyao
    Li, Xinmin
    Huang, Yi
    Fang, Yuan
    Cao, Hui
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [18] Deep reinforcement learning-based autonomous parking design with neural network compute accelerators
    Ozeloglu, Alican
    Gurbuz, Ismihan Gul
    San, Ismail
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (09):
  • [19] A survey on machine learning-based routing for VLSI physical design
    Li, Lin
    Cai, Yici
    Zhou, Qiang
    INTEGRATION-THE VLSI JOURNAL, 2022, 86 : 51 - 56
  • [20] Learning Backoff: Deep Reinforcement Learning-Based Wireless Channel Access
    Lee, Taegyeom
    Jo, Ohyun
    IEEE SYSTEMS JOURNAL, 2024, 18 (01): : 351 - 354