Condensate formation in a chiral lattice gas

被引:0
|
作者
Wang, Boyi [1 ,2 ,3 ,4 ]
Juelicher, Frank [4 ,5 ,6 ]
Pietzonka, Patrick [4 ,7 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Lab Soft Matter Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[4] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[5] Ctr Syst Biol Dresden, Pfotenhauerstr 108, Dresden, Germany
[6] Tech Univ Dresden, Cluster Excellence Phys Life, D-01062 Dresden, Germany
[7] Univ Edinburgh, Sch Phys & Astron, SUPA, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Scotland
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 09期
关键词
chirality; lattice gas; statistical mechanics; phase transitions; condensates; PHASE-SEPARATION; ODD VISCOSITY; ROTATION; SURFACE; MODEL;
D O I
10.1088/1367-2630/ad7490
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the formation of condensates in a binary lattice gas in the presence of chiral interactions. These interactions differ between a given microscopic configuration and its mirror image. We consider a two-dimensional lattice gas with nearest-neighbour interactions, to which we add interactions involving favoured local structures (FLSs) that are chiral. We focus on FLSs that have the shape of the letter L and explore condensate formation through simulations and analytical calculations. At low temperature, this model can exhibit four different phases that are characterised by different periodic tiling patterns, depending on the strength of interactions and the chemical potential. When particle numbers are conserved, some of these phases can coexist. We analyse the structure and surface tension of interfaces between coexisting phases and determine the shapes of minimal free energy of crystalline condensates. We show that these shapes can be quadrilaterals or octagons of different orientation and symmetry.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Determination of the Chiral Condensate from (2+1)-Flavor Lattice QCD
    Fukaya, H.
    Aoki, S.
    Hashimoto, S.
    Kaneko, T.
    Noaki, J.
    Onogi, T.
    Yamada, N.
    PHYSICAL REVIEW LETTERS, 2010, 104 (12)
  • [22] Vortex lattice formation in a rotating Bose-Einstein condensate
    Tsubota, M
    Kasamatsu, K
    Ueda, M
    PHYSICAL REVIEW A, 2002, 65 (02): : 4
  • [23] Vortex lattice formation in a rotating Bose-Einstein condensate
    Tsubota, Makoto
    Kasamatsu, Kenichi
    Ueda, Masahito
    Physical Review A. Atomic, Molecular, and Optical Physics, 2002, 65 (02): : 1 - 023603
  • [24] TEMPERATURE-DEPENDENCE OF THE CHIRAL CONDENSATE FROM AN INTERACTING PION GAS
    BUNATIAN, G
    WAMBACH, J
    PHYSICS LETTERS B, 1994, 336 (3-4) : 290 - 294
  • [25] Stages in the Formation of Orenburg Gas Condensate Field.
    Maksimov, S.P.
    Larskaya, E.S.
    Sukhova, A.N.
    Geologiya Nefti i Gaza, 1979, (02): : 26 - 32
  • [26] THE FORMATION OF GAS-CONDENSATE DEPOSITS IN THE IRKUTSKII BASIN
    DANILKIN, SM
    IZVESTIYA AKADEMII NAUK SSSR SERIYA GEOLOGICHESKAYA, 1981, (05): : 98 - 105
  • [28] Disoriented chiral condensate formation from a state with collective pion fields
    Biro, TS
    Molnar, D
    Feng, ZH
    Csernai, LP
    PHYSICAL REVIEW D, 1997, 55 (11) : 6900 - 6909
  • [29] UPPER BOUND ON THE CONDENSATE IN THE HARD-CORE BOSE LATTICE GAS
    TOTH, B
    JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (1-2) : 373 - 378
  • [30] Disoriented chiral condensate formation from tubes of hot quark plasma
    Abada, A
    Birse, MC
    PHYSICAL REVIEW D, 1998, 57 (01): : 292 - 298