Flame spread over thin circular ducts

被引:1
|
作者
Kumar, Vipin [1 ,2 ]
Kambam, Naresh [1 ,2 ]
Kumar, Amit [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Aerosp Engn, Madras 600036, India
[2] Indian Inst Technol, Natl Ctr Combust Res & Dev, Madras 600036, India
关键词
Flame spread; Circular duct; Opposed flow; Microgravity; SOLID-FUEL; MICROGRAVITY; MECHANISMS;
D O I
10.1016/j.proci.2024.105775
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work opposed flow flame spread over thin cellulosic circular ducts is investigated in normal gravity and microgravity environments for the first time. The experiments are conducted under different opposed flow speeds on circular ducts of diameter 10 mm, 19 mm and 38 mm and for comparison corresponding planar fuels of width of 10 mm, 20 mm and 40 mm are chosen respectively. All the microgravity tests are conducted using a 2.5 s drop tower facility. Over the matrix of test in the present study, the flame spread rates for circular ducts are higher compared to the planar fuel of corresponding widths. Unlike planar fuels where the effect of fuel width is small, the flame spread rate significantly increases with the increase in duct size in both normal gravity and micro- gravity. The flame spread rate over ducts exhibits a non-monotonic trend with flow speed which can also be seen in planar fuels. However, the variation with flow is much more significant especially at large diameters. The duct configuration also shows significant change in flame shape and size between normal gravity and micro- gravity environments. An analytical model is developed to predict flame spread rate over planar as well as circular ducts. The model successfully captures the flame spread rate trends with flow speed as well as fuel diameter.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] FLAME SPREAD OVER THIN SOLID FUELS IN PARTIALLY PREMIXED ATMOSPHERES
    RONNEY, PD
    GREENBERG, JB
    ZHANG, Y
    ROEGNER, EV
    COMBUSTION AND FLAME, 1995, 100 (03) : 474 - 484
  • [22] Structure and spread limits of a diffusion flame over thin solid fuel
    Russian Acad of Sciences, Chernogolovka, Russia
    Symp Int Combust, (2791-2796):
  • [23] Experimental study of upward flame spread over discrete thin fuels
    Cui, Wohan
    Liao, Ya-Ting T.
    FIRE SAFETY JOURNAL, 2019, 110
  • [24] Ignition and transition to flame spread over a thin solid fuel on the floor
    Lin, TH
    COMBUSTION SCIENCE AND TECHNOLOGY, 2004, 176 (07) : 1071 - 1091
  • [25] The structure and spread limits of a diffusion flame over thin solid fuel
    Rybanin, S
    TWENTY-SEVENTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, 1998, : 2791 - 2796
  • [26] Flame spread over thin fuels in actual and simulated microgravity conditions
    Olson, S. L.
    Miller, F. J.
    Jahangirian, S.
    Wichman, I. S.
    COMBUSTION AND FLAME, 2009, 156 (06) : 1214 - 1226
  • [27] Experimental Studies on the Effects of Spacing on Upward Flame Spread over Thin PMMA
    Zhu, Hui
    Zhu, Guoqing
    Gao, Yunji
    Zhao, Guoxiang
    FIRE TECHNOLOGY, 2017, 53 (02) : 673 - 693
  • [28] FLAME SPREAD OVER A THERMALLY-THIN SOLID FUEL IN ZERO GRAVITY
    DUH, FC
    CHEN, CH
    WARME UND STOFFUBERTRAGUNG-THERMO AND FLUID DYNAMICS, 1993, 28 (1-2): : 81 - 88
  • [30] Effect of radiation loss on flame spread over a thin PMMA sheet in microgravity
    Takahashi, S
    Kondou, M
    Wakai, K
    Bhattacharjee, S
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2002, 29 : 2579 - 2586