Co-pyrolysis of sewage sludge and biomass waste into biofuels and biochar: A comprehensive feasibility study using a circular economy approach

被引:6
|
作者
O'Boyle M. [1 ]
Mohamed B.A. [1 ,2 ]
Li L.Y. [1 ]
机构
[1] Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, V6T 1Z4, BC
[2] Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza
关键词
Biochar; Biofuel; Energy recovery; Lignocellulosic biomass; Net present worth analysis; Techno-economic analysis;
D O I
10.1016/j.chemosphere.2023.141074
中图分类号
学科分类号
摘要
Enormous annual sewage sludge (SS) volumes pose global environmental challenges owing to contamination and significant greenhouse gas emissions. Here, we investigated the economic viability of co-pyrolyzing SS and biomass waste to produce biofuels (bio-oil and gas) and biochar. Net present worth (NPW) analysis, the sale product break-even price, and sludge handling price (SHP) were used to determine the profitability of co-pyrolysis compared with SS pyrolysis alone and conventional treatment methods. In this study, the sale prices of biochar based on quality (i.e., stability, carbon sequestration effectiveness, and heavy metal content) were estimated to be 2.24, 1.44, and 0.98 CAD/kg for high-, medium-, and low-grade biochar. The bio-oil prices, estimated based on the higher heating values of bio-oil and diesel, ranged from 0.80 to 1.22 CAD/kg. Sawdust (SD) and wheat straw (WS) were the chosen co-pyrolysis feedstocks, with four mixing ratios (20, 40, 60, and 80 wt%). Economically, SD (40 wt% mixing ratio) co-pyrolysis achieved the best performance, with a maximum NPW of 8.71 million CAD. SD single and co-pyrolysis were the only profitable scenarios. Moreover, SS single pyrolysis and WS co-pyrolysis exhibited higher profitability than conventional SS treatment methods, with SHPs of 65 and 40 CAD/1000 kg dry sludge, respectively. Sensitivity analysis highlighted the dependence of economic performance on biochar and bio-oil market value. This study offers the first economic analysis of this approach and enhances our understanding of the potential of co-pyrolysis for biofuel and biochar production, providing innovative solutions for the environmental challenges of SS disposal. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [41] Co-pyrolysis of lignocellulosic biomass and plastics: A comprehensive study on pyrolysis kinetics and characteristics
    Thuan Anh Vo
    Quoc Khanh Tran
    Hoang Vu Ly
    Kwon, Byeongwan
    Hwang, Hyun Tae
    Kim, Jinsoo
    Kim, Seung-Soo
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 163
  • [42] Synergetic effect of sewage sludge and biomass co-pyrolysis: A combined study in thermogravimetric analyzer and a fixed bed reactor
    Wang, Xuebin
    Deng, Shuanghui
    Tan, Houzhang
    Adeosun, Adewale
    Vujanovic, Milan
    Yang, Fuxin
    Duic, Neven
    ENERGY CONVERSION AND MANAGEMENT, 2016, 118 : 399 - 405
  • [43] Co-pyrolysis of municipal solid waste (MSW) and biomass with Co/sludge fly ash catalyst
    Gao, Ningbo
    Milandile, Mwenya Humphrey
    Sipra, Ayesha Tariq
    Su, Sheng
    Miskolczi, Norbert
    Quan, Cui
    FUEL, 2022, 322
  • [44] Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review
    Wang, Zhiwei
    Burra, Kiran G.
    Lei, Tingzhou
    Gupta, Ashwani K.
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2021, 84
  • [45] Adsorptive recovery of phosphate using iron functionalized biochar prepared via co-pyrolysis of wheat straw and sewage sludge
    Irfan, Iqra
    Inam, Muhammad Ali
    Usmani, Waleed
    Iftikhar, Rashid
    Jahan, Zaib
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2023, 32
  • [46] Efficient recovery of phosphate from aqueous solution using biochar derived from co-pyrolysis of sewage sludge with eggshell
    Yang, Jie
    Zhang, Mingliang
    Wang, Haixia
    Xue, Junbing
    Lv, Qi
    Pang, Guibin
    Kassinos, Despo
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (05):
  • [47] Energy recovery and waste treatment using the co-pyrolysis of biomass waste and polymer
    Oh, Seok-Young
    Sohn, Jung-In
    WASTE MANAGEMENT & RESEARCH, 2022, 40 (11) : 1637 - 1644
  • [48] Microwave co-pyrolysis of industrial sludge and waste biomass: Product valorization and synergistic mechanisms
    Liu, Yang
    Siyal, Asif Ali
    Zhou, Chunbao
    Liu, Chenglong
    Fu, Jie
    Zhang, Yingwen
    Yao, Bang
    Chao, Li
    Yun, Huimin
    Dai, Jianjun
    Bi, Xiaotao
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [49] Study on the co-pyrolysis characteristics of sewage sludge and wood powder and kinetic analysis
    Jun Zhang
    Rui Zhao
    Yuying Du
    Liang Chen
    Zizhao Chen
    Na Xiao
    Zhengshun Wu
    Biomass Conversion and Biorefinery, 2024, 14 : 1593 - 1605
  • [50] Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals
    Wang, Xingdong
    Chang, Victor Wei-Chung
    Li, Zhiwei
    Chen, Zhan
    Wang, Yin
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 412