Efficient detection of different fire scenarios or nuisance incidents using deep learning methods

被引:2
|
作者
Ozyurt, Osman [1 ]
机构
[1] Yeditepe Univ, Dept Elect & Elect Engn, ?, Istanbul, Turkiye
来源
关键词
Fire safety building systems; Fire type detection; Light scattering; Time series classification; Deep learning; SMOKE; PARTICLES; AMPLIFIER; SIGNALS; RATIO;
D O I
10.1016/j.jobe.2024.109898
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fire is a major disaster in buildings, consequences of which can be minimized or even prevented by appropriate measures. Traditional smoke detectors usually create an alarm without distinguishing between a fire or nuisance. Frequent false alarms result in unnecessary evacuations, costly fire-fighter responses, and waste of extinguishing agents. Early and accurate fire detection is crucial. Therefore, DL (deep learning) models are developed to distinguish smokes of cotton, wood, N-heptane, polyurethane foam, sunflower oil, cigarettes, printed circuit board (PCB), aerosols of paraffin, PAO (Polyalphaolefins), DEHS (Di-Ethyl-Hexyl-Sebacat), cement or plaster powders, fabric and mixtures of some of them. An existing non-complex high-sensitivity optical cell has been improved and adapted. DL models are trained using orientation-dependent scattering of light from particles at wavelengths of 405 and 980 nm. With paraffin aerosol, the highest smoke density at which the cell saturates is about 1.4 % obs/m. Five different DL models are created, trained with fire events with slowest fire growth rates and evaluated against unknown fire events with fastest fire growth rates. To consider the component tolerances of the amplifier electronics, Monte Carlo methods are performed, and the test data are manipulated accordingly. The F1 scores of the largest DL model for individual particle and fire event type discriminations surpass 88.0 % and 99.4 %, respectively, with augmented data. Due to its high sensitivity at low particle concentrations, transferring the methods from this study to smoke detectors in buildings can significantly decrease false alarms and enables precise localization of fire instances via source type prediction.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Fire Detection with Deep Learning: A Comprehensive Review
    Vasconcelos, Rodrigo N.
    Rocha, Washington J. S. Franca
    Costa, Diego P.
    Duverger, Soltan G.
    Santana, Mariana M. M. de
    Cambui, Elaine C. B.
    Ferreira-Ferreira, Jefferson
    Oliveira, Mariana
    Barbosa, Leonardo da Silva
    Cordeiro, Carlos Leandro
    LAND, 2024, 13 (10)
  • [32] An efficient deepfake video detection using robust deep learning
    Qadir, Abdul
    Mahum, Rabbia
    El-Meligy, Mohammed A.
    Ragab, Adham E.
    AlSalman, Abdulmalik
    Awais, Muhammad
    HELIYON, 2024, 10 (05)
  • [33] An efficient system for anomaly detection using deep learning classifier
    A. R. Revathi
    Dhananjay Kumar
    Signal, Image and Video Processing, 2017, 11 : 291 - 299
  • [34] An efficient approach for automatic crack detection using deep learning
    Usharani, Shola
    Gayathri, R.
    Kovvuri, Uday Surya Deveswar Reddy
    Nivas, Maddukuri
    Md, Abdul Quadir
    Tee, Kong Fah
    Sivaraman, Arun Kumar
    INTERNATIONAL JOURNAL OF STRUCTURAL INTEGRITY, 2024, 15 (03) : 434 - 460
  • [35] An Efficient Approach for Skin Disease Detection using Deep Learning
    Alam, Jihan
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [36] An efficient system for anomaly detection using deep learning classifier
    Revathi, A. R.
    Kumar, Dhananjay
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (02) : 291 - 299
  • [37] Parking Space Occupancy Detection Using Deep Learning Methods
    Akinci, Fatih Can
    Karakaya, Murat
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [38] Potato diseases detection and classification using deep learning methods
    Ali Arshaghi
    Mohsen Ashourian
    Leila Ghabeli
    Multimedia Tools and Applications, 2023, 82 : 5725 - 5742
  • [39] A Review of Posture Detection Methods for Pigs Using Deep Learning
    Chen, Zhe
    Lu, Jisheng
    Wang, Haiyan
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [40] Potato diseases detection and classification using deep learning methods
    Arshaghi, Ali
    Ashourian, Mohsen
    Ghabeli, Leila
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (04) : 5725 - 5742