Numerical predictions of flashback limits of H2-enriched methane/air premixed laminar flames

被引:0
|
作者
Cuoci, A. [1 ]
Frassoldati, A. [1 ]
Cozzi, F. [2 ]
机构
[1] Politecn Milan, CRECK Modeling Lab, Dept Chem Mat & Chem Engn, Milan, Italy
[2] Politecn Milan, Dept Energy, Milan, Italy
关键词
Hydrogen; Flashback; Burner; Natural gas; Decarbonization;
D O I
10.1016/j.proci.2024.105696
中图分类号
O414.1 [热力学];
学科分类号
摘要
Hydrogen is considered as a promising resource for decarbonizing not just the industrial sector but also domestic heating systems. By partially substituting natural gas with hydrogen, domestic combustion-based conversion systems have the potential to enhance efficiency, decrease carbon emissions, and achieve cleaner combustion, specifically reducing levels of particulate matter. Nevertheless, hydrogen possesses properties that differ significantly from natural gas. In particular, due to its higher laminar flame speed, hydrogen has a much higher propensity to flashback than natural gas, raising notable safety concerns. This study aims to examine the impact of H2 addition (up to 100%) to natural gas on the combustion process in domestic condensing boilers. To achieve this objective, 3D numerical simulations are conducted, modeling the multi-hole geometry that emulate perforated burners commonly found in these appliances. The simulations incorporate detailed kinetics and conjugate heat transfer with the burner plate and consider various hole-to- hole distances for a more comprehensive analysis. Flashback limits are found for a wide range of operating conditions of interest for domestic applications, with equivalence ratios from 0.5 to 1 and hydrogen fractions from 0 (pure methane) to 1 (pure hydrogen). The results confirm the observations of previous works on planar, multi-slit configurations. More specifically, the results shows that the conventional flashback correlation based on the concept of critical velocity gradient becomes inaccurate for H2 fractions larger than 0.50 as it does not take into account stretch induced preferential diffusion effects, which are especially large in the multi-hole configuration here investigated.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] SOOTING LIMITS OF CHLORINATED-HYDROCARBON METHANE AIR PREMIXED FLAMES
    SENKAN, SM
    ROBINSON, JM
    GUPTA, AK
    COMBUSTION AND FLAME, 1983, 49 (1-3) : 305 - 314
  • [32] An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames
    Shu, Tao
    Xue, Yuan
    Zhou, Zijun
    Ren, Zhuyin
    FUEL, 2021, 290
  • [33] A numerical study on premixed laminar ammonia/air flames enriched with hydrogen: An analysis on flame-wall interaction
    Tamadonfar, Parsa
    Karimkashi, Shervin
    Zirwes, Thorsten
    Vuorinen, Ville
    Kaario, Ossi
    COMBUSTION AND FLAME, 2024, 265
  • [34] The Effect of CO2 Dilution on the Laminar Burning Velocity of Premixed Methane/Air Flames
    Chan, Y. L.
    Zhu, M. M.
    Zhang, Z. Z.
    Liu, P. F.
    Zhang, D. K.
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 3048 - 3053
  • [35] STRUCTURE OF LAMINAR PREMIXED CARBON METHANE AIR FLAMES AND ULTRAFINE COAL COMBUSTION
    BRADLEY, D
    CHEN, Z
    ELSHERIF, S
    HABIK, SE
    JOHN, G
    DIXONLEWIS, G
    COMBUSTION AND FLAME, 1994, 96 (1-2) : 80 - 96
  • [36] KINETIC MECHANISMS FOR PREMIXED, LAMINAR, STEADY-STATE METHANE AIR FLAMES
    COFFEE, TP
    COMBUSTION AND FLAME, 1984, 55 (02) : 161 - 170
  • [37] Measured and predicted properties of laminar premixed methane/air flames at various pressures
    Hassan, MI
    Aung, KT
    Faeth, GM
    COMBUSTION AND FLAME, 1998, 115 (04) : 539 - 550
  • [38] A numerical study of H2-air partially premixed flames
    Briones, AM
    Aggarwal, SK
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (03) : 327 - 339
  • [39] Investigation of the influence of DMMP on the laminar burning velocity of methane/air premixed flames
    Li, Wei
    Jiang, Yong
    Jin, Yi
    Zhu, Xianli
    FUEL, 2019, 235 : 1294 - 1300
  • [40] Effects of hydrogen concentration on premixed laminar flames of hydrogen-methane-air
    Okafor, Ekenechukwu C.
    Hayakawa, Akihiro
    Nagano, Yukihide
    Kitagawa, Toshiaki
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) : 2409 - 2417