Improved Dangerous Goods Detection in X-Ray Images of YOLOv7

被引:0
|
作者
Jilong, Zhang [1 ]
Jun, Zhao [1 ]
Jinlong, Li [1 ]
机构
[1] School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou,730070, China
关键词
Deep learning;
D O I
10.3778/j.issn.1002-8331.2308-0444
中图分类号
学科分类号
摘要
Aiming at the problems of complex background, serious occlusion and variable scale of X-ray security inspection images in dangerous goods detection, the YOLOv7 algorithm is improved, which improves the detection accuracy and makes the network more lightweight. Firstly, the PS-ELAN module is built to replace the ELAN module in the original backbone network, which reduces the network computing amount and memory occupation, and improves the feature extraction capability of the network. Secondly, the parameter-free attention mechanism SimAM and deformable convolutional DCNv2 are fused into the downsampling stage of the neck network to improve the network’s ability to capture the key features of dangerous goods in X-ray images. Finally, the Dynamic Head module is introduced to enhance the scale perception, spatial perception and task perception of the detection head, and improve the detection performance of the network. Experimental results show that the mean average precision (mAP) of the improved algorithm on the self-made dataset and CLCXray dataset is improved by 4.7 percentage points and 1.2 percentage points, respectively, and the number of parameters and calculations are reduced by 16.2% and 23.1%, respectively. The improved algorithm makes detection capability lighter, which can play a good role in actual security checks. © 2024 Journal of Computer Engineering and Applications Beijing Co., Ltd.; Science Press. All rights reserved.
引用
收藏
页码:266 / 275
相关论文
共 50 条
  • [41] Improved Cherry Detection Method at Night Based on YOLOv7: YOLOv7-Cherry
    Gai, Rongli
    Kong, Xiangzhou
    Qin, Shan
    Wei, Kai
    Computer Engineering and Applications, 2024, 60 (21) : 315 - 323
  • [42] An Improved YOLOv7 Lightweight Detection Algorithm for Obscured Pedestrians
    Li, Chang
    Wang, Yiding
    Liu, Xiaoming
    SENSORS, 2023, 23 (13)
  • [43] Pedestrian Fall Detection Algorithm Based on Improved YOLOv7
    Wang, Fei
    Zhang, Yunchu
    Zhang, Xinyi
    Liu, Yiming
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 437 - 448
  • [44] FOREST FIRE DETECTION BASED ON IMPROVED YOLOV7 MODELING
    Yang, Q.
    Zhang, T.
    Tong, X.
    Hu, L. H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024, 22 (04): : 3123 - 3136
  • [45] LSDNet: a lightweight ship detection network with improved YOLOv7
    Lang, Cui
    Yu, Xiaoyan
    Rong, Xianwei
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (02)
  • [46] LSDNet: a lightweight ship detection network with improved YOLOv7
    Cui Lang
    Xiaoyan Yu
    Xianwei Rong
    Journal of Real-Time Image Processing, 2024, 21
  • [47] Personnel Intrusion Detection in Railway Perimeter with Improved YOLOv7
    Jin, Zhongda
    Hu, Zhibin
    Wang, He
    Li, Peiyun
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023, 2024, 1998 : 238 - 249
  • [48] Steel Surface Defect Detection Based on Improved YOLOv7
    Li, Ming
    Wei, Lisheng
    Zheng, Bowen
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024, 2024, : 51 - 55
  • [49] YOLOv7-SN: Underwater Target Detection Algorithm Based on Improved YOLOv7
    Zhao, Ming
    Zhou, Huibo
    Li, Xue
    SYMMETRY-BASEL, 2024, 16 (05):
  • [50] STRIP SURFACE DEFECT DETECTION BASED ON IMPROVED YOLOV7
    Wu, Huixin
    Chen, Kaiyuan
    Ni, Mengqi
    Ma, Lin
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2024, 20 (05): : 1493 - 1507