ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection

被引:1
|
作者
Xin, Zhimeng [1 ]
Wu, Tianxu [2 ]
Chen, Shiming [2 ]
Zou, Yixiong [3 ]
Shao, Ling [4 ]
You, Xinge [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
[4] Univ Chinese Acad Sci UCAS, UCAS Terminus AI Lab, Beijing 100101, Peoples R China
关键词
Training; Detectors; Object detection; Feature extraction; Task analysis; Semantics; Adaptation models; Few-shot object detection; extensible attention; co-existing regions; NETWORK;
D O I
10.1109/TIP.2024.3411771
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot object detection (FSOD) identifies objects from extremely few annotated samples. Most existing FSOD methods, recently, apply the two-stage learning paradigm, which transfers the knowledge learned from abundant base classes to assist the few-shot detectors by learning the global features. However, such existing FSOD approaches seldom consider the localization of objects from local to global. Limited by the scarce training data in FSOD, the training samples of novel classes typically capture part of objects, resulting in such FSOD methods being unable to detect the completely unseen object during testing. To tackle this problem, we propose an Extensible Co-Existing Attention (ECEA) module to enable the model to infer the global object according to the local parts. Specifically, we first devise an extensible attention mechanism that starts with a local region and extends attention to co-existing regions that are similar and adjacent to the given local region. We then implement the extensible attention mechanism in different feature scales to progressively discover the full object in various receptive fields. In the training process, the model learns the extensible ability on the base stage with abundant samples and transfers it to the novel stage of continuous extensible learning, which can assist the few-shot model to quickly adapt in extending local regions to co-existing regions. Extensive experiments on the PASCAL VOC and COCO datasets show that our ECEA module can assist the few-shot detector to completely predict the object despite some regions failing to appear in the training samples and achieve the new state-of-the-art compared with existing FSOD methods. Code is released at https://github.com/zhimengXin/ECEA.
引用
收藏
页码:5564 / 5576
页数:13
相关论文
共 50 条
  • [41] Dynamic relevance learning for few-shot object detection
    Liu, Weijie
    Cai, Xiaojie
    Wang, Chong
    Li, Haohe
    Yu, Shenghao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [42] Few-Shot Object Detection Based on Association and Discrimination
    Jia Jianli
    Han Huiyan
    Kuang Liqun
    Han Fangzheng
    Zheng Xinyi
    Zhang Xiuquan
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [43] Few-Shot Object Detection via Sample Processing
    Xu, Honghui
    Wang, Xinqing
    Shao, Faming
    Duan, Baoguo
    Zhang, Peng
    IEEE ACCESS, 2021, 9 (09): : 29207 - 29221
  • [44] Temporal Speciation Network for Few-Shot Object Detection
    Zhao, Xiaowei
    Liu, Xianglong
    Ma, Yuqing
    Bai, Shihao
    Shen, Yifan
    Hao, Zeyu
    Liu, Aishan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8267 - 8278
  • [45] Few-Shot Object Detection on Remote Sensing Images
    Li, Xiang
    Deng, Jingyu
    Fang, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [46] Generalized Few-Shot Object Detection without Forgetting
    Fan, Zhibo
    Ma, Yuchen
    Li, Zeming
    Sun, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4525 - 4534
  • [47] Orthogonal Progressive Network for Few-shot Object Detection
    Wang, Bingxin
    Yu, Dehong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [48] Open-World Few-Shot Object Detection
    Chen, Wei
    Zhang, Shengchuan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 556 - 567
  • [49] Few-Shot Object Detection via Metric Learning
    Zhu Min
    Zhang Chongyang
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [50] Multiple knowledge embedding for few-shot object detection
    Gong, Xiaolin
    Cai, Youpeng
    Wang, Jian
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2231 - 2240