Time Adaptive POD Reduced Order Model for Viscous Incompressible Flows

被引:0
|
作者
Ravindran, S.S. [1 ]
机构
[1] University of Alabama in Huntsville, Department of Mathematical Sciences, Huntsville,AL35899, United States
来源
Proceedings of the IEEE Conference on Decision and Control | 2022年 / 2022-December卷
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Numerical methods
引用
收藏
页码:6105 / 6110
相关论文
共 50 条
  • [21] ERROR ESTIMATES FOR A POD METHOD FOR SOLVING VISCOUS G-EQUATIONS IN INCOMPRESSIBLE CELLULAR FLOWS
    Gu, Haotian
    Xin, Jack
    Zhang, Zhiwen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (01): : A636 - A662
  • [22] High Order Compact Schemes in Projection Methods for Incompressible Viscous Flows
    Fournie, Michel
    Rigal, Alain
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 9 (04) : 994 - 1019
  • [23] A second-order time accurate finite element method for quasi-incompressible viscous flows
    De Sampaio, P. A. B.
    Goncalves, M. A., Jr.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (12) : 1848 - 1864
  • [24] A mathematical and numerical study of the sensitivity of a reduced order model by POD (ROM-POD), for a 2D incompressible fluid flow
    Akkari, N.
    Hamdouni, A.
    Liberge, E.
    Jazar, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 270 : 522 - 530
  • [25] POD-based reduced order model for flows induced by rigid bodies in forced rotation
    Falaize, Antoine
    Liberge, Erwan
    Hamdouni, Aziz
    JOURNAL OF FLUIDS AND STRUCTURES, 2019, 91
  • [26] A POD-based reduced-order model for uncertainty analyses in shallow water flows
    Zokagoa, Jean-Marie
    Soulaimani, Azzeddine
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2018, 32 (6-7) : 278 - 292
  • [27] Goal-oriented model adaptivity for viscous incompressible flows
    van Opstal, T. M.
    Bauman, P. T.
    Prudhomme, S.
    van Brummelen, E. H.
    COMPUTATIONAL MECHANICS, 2015, 55 (06) : 1181 - 1190
  • [28] Goal-oriented model adaptivity for viscous incompressible flows
    T. M. van Opstal
    P. T. Bauman
    S. Prudhomme
    E. H. van Brummelen
    Computational Mechanics, 2015, 55 : 1181 - 1190
  • [29] A DISCRETE VECTOR POTENTIAL MODEL FOR UNSTEADY INCOMPRESSIBLE VISCOUS FLOWS
    MANSUTTI, D
    GRAZIANI, G
    PIVA, R
    JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 92 (01) : 161 - 184
  • [30] General variational model reduction applied to incompressible viscous flows
    Bogner, Thorsten
    JOURNAL OF FLUID MECHANICS, 2008, 617 (31-50) : 31 - 50