Atomic clock locking with Bayesian quantum parameter estimation: Scheme and experiment

被引:0
|
作者
Han, Chengyin [1 ]
Ma, Zhu [1 ,2 ]
Qiu, Yuxiang [2 ,3 ]
Fang, Ruihuan [1 ,2 ]
Wu, Jiatao [1 ,2 ]
Zhan, Chang [1 ,2 ]
Li, Maojie [1 ,2 ]
Huang, Jiahao [1 ,2 ]
Lu, Bo [1 ]
Lee, Chaohong [1 ,4 ]
机构
[1] Shenzhen Univ, Inst Quantum Precis Measurement, Coll Phys & Optoelect Engn, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys & Astron, Lab Quantum Engn & Quantum Metrol, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Hubei Normal Univ, Coll Phys & Elect Sci, Huangshi 435002, Peoples R China
[4] Quantum Sci Ctr Guangdong Hong Kong Macao Greater, Shenzhen 518045, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 04期
关键词
ENTANGLEMENT; STABILITY; CONTRAST; TIMES;
D O I
10.1103/PhysRevApplied.22.044058
中图分类号
O59 [应用物理学];
学科分类号
摘要
Atomic clocks are crucial for science and technology, but their sensitivity is often restricted by the standard quantum limit. To surpass this limit, correlations between particles or interrogation times must be leveraged. Although the sensitivity can be enhanced to the Heisenberg limit using quantum entanglement, it remains unclear whether the scaling of sensitivity with total interrogation time can achieve the Heisenberg scaling. Here, we design an adaptive Bayesian quantum frequency estimation protocol that approaches the Heisenberg scaling and experimentally demonstrate its validity with a cold-atom coherent-population-trapping (CPT) clock. Further, we achieve high-precision closed-loop locking of the cold-atom CPT clock by utilizing our Bayesian quantum frequency estimation protocol. In comparison to the conventional proportional-integral-differential locking, our Bayesian locking scheme not only yields an improvement of 5.1(4) dB in fractional frequency stability, but also exhibits better robustness against technical noises. Our findings not only provide a high-precision approach to lock atomic clocks, but also hold promising applications in various interferometry-based quantum sensors, such as quantum magnetometers and atomic interferometers.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Fast Bayesian approach for parameter estimation
    Jin, Bangti
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (02) : 230 - 252
  • [22] Bayesian parameter estimation in addiction model
    AL-Khairullaha, Najla A.
    AlBaldawi, Tasnim Hasan Kadhim
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 3059 - 3071
  • [23] CONSISTENCY OF BAYESIAN PARAMETER ESTIMATION.
    Yashin, A.I.
    Problems of information transmission, 1981, 17 (01) : 42 - 49
  • [24] BAYESIAN POINT ESTIMATION ON BERNOULLI PARAMETER
    BUNN, DW
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 1976, 4 (01): : 97 - 99
  • [25] BAYESIAN SEQUENTIAL ESTIMATION OF A BINOMIAL PARAMETER
    JONES, PW
    BIOMETRIKA, 1974, 61 (03) : 642 - 644
  • [26] Bayesian parameter estimation in batch polymerisation
    Lu, Z
    Martin, E
    Morris, J
    EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING - 12, 2002, 10 : 517 - 522
  • [27] Designing optimal protocols in Bayesian quantum parameter estimation with higher-order operations
    Bavaresco, Jessica
    Lipka-Bartosik, Patryk
    Sekatski, Pavel
    Mehboudi, Mohammad
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [28] Quantum-Inspired Multi-Parameter Adaptive Bayesian Estimation for Sensing and Imaging
    Lee, Kwan Kit
    Gagatsos, Christos N.
    Guha, Saikat
    Ashok, Amit
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2023, 17 (02) : 491 - 501
  • [29] Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
    Miguez, Joaquin
    Marino, Ines P.
    Vazquez, Manuel A.
    SIGNAL PROCESSING, 2018, 142 : 281 - 291
  • [30] A nonlinear population Monte Carlo scheme for Bayesian parameter estimation in a stochastic intercellular network model
    Miguez, Joaquin
    Marino, Ines P.
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 497 - 500