Analysis of the opportunities and challenges of information technology for enterprise development strategy based on big data technology

被引:0
|
作者
Yin F. [1 ]
机构
[1] Business College, Wuxi Taihu University, Jiangsu, Wuxi
关键词
Algorithm integration; Big data technology; Enterprise development strategy; Kmeans-XGBoost;
D O I
10.2478/amns.2023.2.00588
中图分类号
学科分类号
摘要
Based on big data information technology, this paper analyzes the opportunities and challenges of business development strategies. The clustering algorithm and tree model algorithm in data mining is analyzed. In order to effectively solve the problem of big data classification in consumer-oriented enterprises, the Kmeans clustering algorithm and XGBoost algorithm in the two previous models are integrated to effectively avoid the problem of over-fitting when the models are used alone. The opportunities and challenges in the current stage of business development strategy are analyzed separately. The Kmeans-XGBoost algorithm is used to analyze the pricing and output of the enterprise for prediction. It is shown that the prediction curves of the Kmeans-XGBoost model basically match the actual values, and the confidence interval range is expanding from [3694.879,7202.897] to [2211.819,8406.462]. Meanwhile, the errors of enterprise output prediction under different algorithms are analyzed. The error rate weighted by Kmeans-XGBoost mean is 42.63, which is lower than the traditional model prediction error in 4. © 2023 Fangfang Yin, published by Sciendo.
引用
收藏
相关论文
共 50 条