Networked Federated Meta-Learning Over Extending Graphs

被引:0
|
作者
Cheema, Muhammad Asaad [1 ]
Gogineni, Vinay Chakravarthi [2 ]
Rossi, Pierluigi Salvo [1 ,3 ]
Werner, Stefan [1 ,4 ]
机构
[1] Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Elect Syst, N-7034 Trondheim, Norway
[2] Univ Southern Denmark, Maersk Mc Kinney Moller Inst, SDU Appl AI & Data Sci, DK-5230 Odense, Denmark
[3] SINTEF Energy Res, Dept Gas Technol, N-7034 Trondheim, Norway
[4] Aalto Univ, Dept Informat & Commun Engn, Espoo 02150, Finland
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 23期
关键词
Servers; Adaptation models; Internet of Things; Training; Metalearning; Task analysis; Data models; Distributed; generic parameters; graph federated learning (GFL); meta-learning; COMMUNICATION;
D O I
10.1109/JIOT.2024.3443467
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distributed and collaborative machine learning over emerging Internet of Things (IoT) networks is complicated by resource constraints, device, and data heterogeneity, and the need for personalized models that cater to the individual needs of each network device. This complexity becomes even more pronounced when new devices are added to a system that must rapidly adapt to personalized models. Along these lines, we propose a networked federated meta-learning (NF-ML) algorithm that utilizes meta-learning and underlying shared structures across the network to enable fast and personalized model adaptation of newly added network devices. The NF-ML algorithm learns two sets of model parameters for each device in a distributed manner, with devices communicating only with their immediate neighbors. One set of parameters is personalized for the device-specific task, whereas the other is a generic parameter set learned via peer-to-peer communication. The performance of the proposed NF-ML algorithm was validated using both synthetic and real-world data, and the results show that it adapts to new tasks in just a few epochs, using as little as 10% of the available data, significantly outperforming traditional federated learning methods.
引用
收藏
页码:37988 / 37999
页数:12
相关论文
共 50 条
  • [41] Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach
    Fallah, Alireza
    Mokhtari, Aryan
    Ozdaglar, Asuman
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [42] MetaGater: Fast Learning of Conditional Channel Gated Networks via Federated Meta-Learning
    Lin, Sen
    Yang, Li
    He, Zhezhi
    Fan, Deliang
    Zhang, Junshan
    2021 IEEE 18TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2021), 2021, : 164 - 172
  • [43] Personalized Federated Learning Method Based on Attention-Enhanced Meta-Learning Network
    Gao Y.
    Wang P.
    Liu L.
    Ma H.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (01): : 196 - 208
  • [44] Personalized Federated Learning with Layer-Wise Feature Transformation via Meta-Learning
    Tu, Jingke
    Huang, Jiaming
    Yang, Lei
    Lin, Wanyu
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (04)
  • [45] Meta-Learning over Time for Destination Prediction Tasks
    Tenzer, Mark
    Rasheed, Zeeshan
    Shafique, Khurram
    Vasconcelos, Nuno
    30TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2022, 2022, : 330 - 339
  • [46] PPFM: An Adaptive and Hierarchical Peer-to-Peer Federated Meta-Learning Framework
    Yu, Zhengxin
    Lu, Yang
    Angelov, Plamen
    Suri, Neeraj
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 502 - 509
  • [47] Efficient Military Aircraft Target Detection Model Based on Federated Meta-Learning
    Pan, Zhongjie
    Wang, Xiaotian
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XII, ICIC 2024, 2024, 14873 : 252 - 263
  • [48] Federated Meta-Learning with Attention for Diversity-Aware Human Activity Recognition
    Shen, Qiang
    Feng, Haotian
    Song, Rui
    Song, Donglei
    Xu, Hao
    SENSORS, 2023, 23 (03)
  • [49] Game-Theoretic Federated Meta-learning for Blockchain-Assisted Metaverse
    Baccour, Emna
    Erbad, Aiman
    Mohamed, Amr
    Hamdi, Mounir
    Guizani, Mohsen
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [50] Federated Meta-Learning for Few-Shot Fault Diagnosis with Representation Encoding
    Cui J.
    Li J.
    Mei Z.
    Wei K.
    Wei S.
    Ding M.
    Chen W.
    Guo S.
    IEEE Transactions on Instrumentation and Measurement, 2023, 72 : 1 - 12