Spatiotemporal Graph Convolutional Neural Network-Based Text Recommendation by Considering Situational Awareness

被引:0
|
作者
Liang, Shouyu [1 ]
Liu, Mao [1 ]
Dong, Zhaojie [1 ]
Yang, Wei [1 ]
Guo, Yao [1 ]
Ao, Bang [1 ]
机构
[1] Southern Power Grid Artificial Intelligence Techno, Guangzhou 510700, Guangdong, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Spatiotemporal phenomena; Context modeling; Recommender systems; Convolutional neural networks; Context-aware services; Data models; Deep learning; Text recognition; User experience; Spatiotemporal graph convolution; deep learning; contextual awareness; text recommendation; user experience; TRAFFIC FLOW;
D O I
10.1109/ACCESS.2024.3462509
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Conventional text recommendation models often overlooked user contextual information, resulting in low accuracy and efficiency. Therefore, we propose a new model to integrate user spatiotemporal contextual information, so as to improve the recommendation effect. The study extracts spatiotemporal contextual information of users from their behavioral data, including location information, as well as behavioral characteristics. By processing textual semantic analysis, we define graph adjacency matrix and spatial dependencies. Hence, a spatiotemporal graph convolutional neural network model can be constructed to learn the correlation between users' spatiotemporal contextual features and text items. The proposed model can effectively capture changes in user preferences and interests towards text in different contexts, thereby leading to better recommendation results. After that, some experiments are conducted on real-world dataset to make performance evaluation. The experimental results show that the proposal can achieve significant improvement in recommendation efficiency compared with typical methods. This indicates that proposed model can better understand contextual user information, and improve the user experience in recommendation systems.
引用
收藏
页码:134427 / 134438
页数:12
相关论文
共 50 条
  • [21] A convolutional neural network and graph convolutional network-based method for predicting the classification of anatomical therapeutic chemicals
    Zhao, Haochen
    Li, Yaohang
    Wang, Jianxin
    BIOINFORMATICS, 2021, 37 (18) : 2841 - 2847
  • [22] FaceMD: convolutional neural network-based spatiotemporal fusion facial manipulation detection
    Aloraini, Mohammed
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (01) : 247 - 255
  • [23] Convolutional neural network-based spatiotemporal prediction for deformation behavior of arch dams
    Pan, Jianwen
    Liu, Wenju
    Liu, Changwei
    Wang, Jinting
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [24] FaceMD: convolutional neural network-based spatiotemporal fusion facial manipulation detection
    Mohammed Aloraini
    Signal, Image and Video Processing, 2023, 17 : 247 - 255
  • [25] An improved recommendation based on graph convolutional network
    Yichen He
    Yijun Mao
    Xianfen Xie
    Wanrong Gu
    Journal of Intelligent Information Systems, 2022, 59 : 801 - 823
  • [26] An improved recommendation based on graph convolutional network
    He, Yichen
    Mao, Yijun
    Xie, Xianfen
    Gu, Wanrong
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2022, 59 (03) : 801 - 823
  • [27] A survey on graph neural network-based next POI recommendation for smart cities
    Yu, Jian
    Guo, Lucas
    Zhang, Jiayu
    Wang, Guiling
    Journal of Reliable Intelligent Environments, 2024, 10 (03) : 299 - 318
  • [28] Point-of-Interest Recommendation Model Based on Graph Convolutional Neural Network
    Wu, Ziyang
    Xu, Ning
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [29] A Semisupervised Graph Convolutional Neural Network-based Earth Station Network Planning Method
    Zhao, Honghua
    Sun, Xuemiao
    Hu, Guyu
    Ding, Ke
    2024 INTERNATIONAL CONFERENCE ON UBIQUITOUS COMMUNICATION, UCOM 2024, 2024, : 411 - 415
  • [30] A Recommendation Algorithm for Auto Parts Based on Knowledge Graph and Convolutional Neural Network
    Lin, Junli
    Yin, Shiqun
    Jia, Baolin
    Wang, Ningchao
    BIG DATA, BIGDATA 2022, 2022, 1709 : 57 - 71